Taking stock: Global livestock production systems are (finely and finally) differentiated

Mixed crop-livestock systems in the developing world produce significant amounts of milk and meat

Mixed crop-livestock systems in the developing world produce significant amounts of milk and meat (figure credit: ILRI/Herrero, 2010).

A new book years in the making on the seemingly abstruse topic of  ‘livestock system classifications’ has just been published by the United Nations Food and Agriculture Organization (FAO) and the International Livestock Research Institute (ILRI).

To find out why classifying livestock systems is not an academic matter (hint: it can help fill the gap between the potential and actual yields of our food production systems), but rather matters rather urgently, particularly to the futures of more than 1 billion poor people who depend on livestock for their livelihoods, read on. And note that the book includes lots of new maps to pore over.

Global datasets are becoming increasingly important for priority setting and targeting by organizations with a global mandate for agriculture and agricultural research for development in developing countries. Until now, the best estimates of livestock production systems were those produced by ILRI in 2002. These have now been updated and improved upon by FAO and ILRI.

What’s the book about? From the blurb
‘Informed livestock sector policy development and priority setting is heavily dependent on a good understanding of livestock production systems. In a collaborative effort between the Food and Agriculture Organization and the International Livestock Research Institute, stock has been taken of where we have come from in agricultural systems classification and mapping; the current state of the art; and the directions in which research and data collection efforts need to take in the future.

‘The book also addresses issues relating to the intensity and scale of production, moving from what is done to how it is done. The intensification of production is an area of particular importance, for it is in the intensive systems that changes are occurring most rapidly and where most information is needed on the implications that intensification of production may have for livelihoods, poverty alleviation, animal diseases, public health and environmental outcomes.

‘A series of case studies is provided, linking livestock production systems to rural livelihoods and poverty and examples of the application of livestock production system maps are drawn from livestock production, now and in the future; livestock’s impact on the global environment; animal and public health; and livestock and livelihoods. . . .’

Why this book? From the Introduction
‘Many organizations are involved in assembling and disseminating global spatial datasets that can be used for a wide variety of purposes. Such datasets are becoming increasingly important for priority setting and targeting by organizations with a global mandate for agriculture and agricultural research for development, such as the United Nations (UN) Food and Agriculture Organization (FAO), the international centres of the Consultative Group on International Agricultural Research (CGIAR), regional and subregional research organizations, and donors who need to target their investments and measure their impacts on beneficiaries. The world in which we live is extremely dynamic, and this is reflected in the ways in which the world feeds itself and people meet their livelihood requirements. There can be considerable heterogeneity in the determinants of rural poverty (Snel and Henninger, 2002; Kristjanson et al., 2005). An implication of this is that poverty alleviation efforts increasingly need to be targeted at relatively small groups of people, and this calls for a finer grain in the definition of intervention domains than has perhaps been considered in the past.

‘Currently, one of the biggest gaps in the availability of global datasets is a spatial agricultural systems classification that provides appropriate detail on the distribution of crops and livestock in different places.

This publication addresses this gap by bringing together some recent developments in agricultural production system mapping and highlighting some of the difficult problems involved. The book also identifies further work that is required to develop a dynamic global agricultural production systems classification that can be mapped, ground-truthed, and refined through time. . . .

‘The outputs described here should find immediate application among development organizations, donors and research institutes, in targeting investment and technology or policy interventions that are effective in promoting sustainable livelihoods of the poor in developing countries.

Why map livestock production systems?
‘Farming of crops and livestock cannot be considered independently of one another nor should they be considered in isolation. Established links between livestock numbers, cultivation levels and human populations suggest that greater attention should be paid to quantifying and mapping these associations (Bourn and Wint, 1994). The interdependence of crops and livestock in mixed farms and the different contributions made to livelihoods (Powell et al., 1995) suggest that these two aspects of farming should be considered together. The nature of such interactions is heavily shaped by environmental factors and, increasingly, by economic forces.

‘A detailed knowledge of the distribution of livestock resources finds many applications, for example, in estimating production and off-take, the impacts of livestock on the environment, livestock disease risk and impact, and the role that livestock plays in people’s livelihoods (Robinson et al., 2007; FAO, 2007a). But livestock is not all equal. In different contexts it serves quite different functions, plays different roles in people’s livelihoods, varies in herd structure and breed composition, and is fed and managed in different ways. For most applications some sort of practical stratification is needed: milk yields are not the same from cows reared in extensive, low-input pastoral systems as they are from specifically-bred dairy cows raised intensively. In the same way, the risks posed by livestock diseases vary considerably depending on whether animals are kept in high-density housing or grazed over large areas of rangeland, for example. At its simplest, combining information on production systems with livestock statistics allows livestock numbers to be disaggregated by production system (see, for example, the appendices in FAO, 2007a). Compared with simple national totals, this gives a more meaningful breakdown of how livestock are distributed across the globe. . . .’

What are the new numbers? From the conclusions
‘In terms of the numbers of poor and our estimates of the numbers of poor livestock keepers, based on national, rural poverty lines for 2010, the critical regions are still South Asia and sub-Saharan Africa. Some 71 percent of the estimated 430 million poor livestock keepers live in these two regions, up from 66 percent a decade earlier. While the rangeland systems contain relatively few poor, most of these households are dependent on livestock for their livelihoods. Half of the poor livestock keepers in rangeland systems globally are located in sub-Saharan Africa: nearly 60 million, based on national, rural poverty lines. The mixed systems contain large numbers of poor (over one billion), and the number of poor people who depend to some extent on livestock is considerable: the mixed irrigated and mixed rainfed systems are estimated to host more than 300 million poor livestock keepers based on national and international US$1.25 per day poverty lines, and double that many based on the international US$2.00 per day poverty lines.

‘Despite their obvious limitations and coarseness, the data presented on locations and densities of poor livestock keepers can still provide information of considerable use. The current information continues to be used at ILRI to prioritize and focus livestock research, and to help identify ‘hotspots’ at the global and regional levels that can then be investigated in more detail at higher resolution. Such hotspots can be defined in various ways depending on the purpose: as areas of high population densities of poor livestock keepers, or areas of high densities of poor people coupled with high levels of biodiversity or natural resource degradation, for example. Such information is critical for informing action agendas concerning livestock, development, and global change. . . .’

How did the book come about? From the foreword
‘This book has grown out of a long-standing collaboration between the Food and Agriculture Organization of the United Nations (FAO), and the International Livestock Research Institute (ILRI). It emerged from a meeting of international organizations held at the Earth Institute at Columbia University in 2004, at which FAO and the Consultative Group on International Agricultural Research were charged with closing a gap in our understanding of the distribution of agricultural production systems. The book took further shape following a workshop convened by FAO in Bangkok in 2006, during which the custodians of many of the key datasets needed to produce maps of global livestock production systems were brought together with experts and researchers in agricultural production systems. It brings together the results of several years’ of activity by FAO and ILRI, along with colleagues from the International Food Policy Research Institute, the International Institute for Applied Systems Analysis and many other organisations not explicitly linked to the production of the book.’

Download the whole publication here: Global livestock production systems, by TP Robinson, PK Thornton (ILRI), G Franceschini, RL Kruska (former ILRI), F Chiozza, A Notenbaert (ILRI), G Cecchi, M Herrero (ILRI), M Epprecht, S Fritz, L You, G Conchedda and L See, 2011, Rome: Food and Agriculture Organization of the United Nations (FAO) and International Livestock Research Institute (ILRI), 152 pp.

La Nina, not climate change, probable cause of East Africa’s drought–ILRI livestock scientists

denan 1

One of thousands of dead cattle in the southern Somali Region of Ethiopia five years ago, in an earlier drought in the same region of the Horn of Africa (photo on Flickr by Andrew Heavens).

Scientists at the International Livestock Research Institute (ILRI), headquartered in Nairobi, Kenya, are saying that the current drought cycle in East Africa’s Horn, which has already led to famine in southern Somalia, cannot be ascribed to climate change, although there is evidence that La Niña is a probable cause.

Interviews by IRIN of ILRI scientists Phil Thornton, a systems analyst specializing in climate change in developing countries, and Jan de Leeuw, an environmental scientist leading ILRI’s rangelands research, were published in the Guardian‘s Development Network Blog.

‘. . . Philip Thornton, a senior scientist who works part-time with the Nairobi-based International Livestock Research Institute (ILRI) and the University of Edinburgh-based Institute of Atmospheric and Environmental Sciences, has done some pioneering work on projections of climate-change impact in eastern and southern Africa.

‘He told IRIN via email that projections of the climate change impact in east Africa were “a problem” as the authoritative inter-governmental panel on climate change’s (the IPCC) fourth assessment report “indicated that there was good consensus among the climate models that rainfall was likely to increase during the current century.

‘”But work by other climate scientists since then suggests that . . . certain Indian Ocean effects in east Africa may not actually occur.

‘”Some people think that east Africa is drying, and has dried over recent years; currently there is no hard, general evidence of this, and it is very difficult as yet to see where the statistical trends of rainfall in the region are heading, but these will of course become apparent in time.”

‘The IPCC’s fifth assessment report will be released in 2014.

‘Jan de Leeuw is the operating project leader in the vulnerability and sustainability in pastoral and agro-pastoral systems within ILRI’s people, livestock and environment theme. He points out that this La Niña event is one of the strongest since the 1970s. But he says La Niña, along with El Niño, appear in cycles that “we don’t understand”.

‘What we do know is that La Niña started to develop in August 2010. It cools surface waters in the central and eastern Pacific Ocean, while allowing warmer water to build in the eastern Pacific. “The pool of warm water in the east intensifies rains in Australia, the Philippines, and Indonesia. Domino-style, this pattern also increases the intensity of westerly winds over the Indian Ocean, pulling moisture away from east Africa toward Indonesia and Australia. The result? Drought over most of east Africa and floods and lush vegetation in Australia and other parts of Southeast Asia,” according to the US government’s National Aeronautics and Space Administration.

‘De Leeuw writes: “La Niña events were common from 1950 till 1976. Since then we had two decades [until about 1996] with fewer events of lesser depth. This has changed since then and over the last 15 years or so we have had more frequent La Niña events.”

‘Events as deep as the current La Niña occur once in 20 or 30 years, writes De Leeuw. “We are in a period now of more frequent La Niña events, but such a situation was there from 1950 till 1976 also.”

‘Thornton has the last word when he says research attention must focus on developing effective early warning systems and ways to help people affected by these events, who have no use for “academic” consideration of the linkages with climate change to cope better with the current levels of weather variability, “whatever happens in the future”.’

Read the whole article by IRIN on the Guardian‘s Development Network Blog: La Niña blamed for east African drought: Environmentalists call for the development of early warning systems to help countries prepare for adverse weather, 14 Jul 2011.

In the crosshairs of hunger and climate change: New ILRI-CCAFS study maps the global hotspots

Please find a corrected and revised statement below, along with a link to download revised maps here: http://ccafs.cgiar.org/resources/climate_hotspots. All edits to the original article posted on this blog are reflected in RED and BOLDFACE below.

Five per cent reduction in crop season sensitivity to change capacity to cope: Corrected version

Five per cent reduction in crop season sensitivity to change capacity to cope: Corrected 13 Jul 2011 (map credit ILRI/CCAFS/Notenbaert).

A new study out today reveals future ‘hotspots’ of risk for hundreds of millions whose food problems are on a collision course with climate change. The scientists conducting the study warn that disaster looms for parts of Africa and all of India if chronic food insecurity converges with crop-wilting weather. They went on to say that Latin America is also vulnerable.

The red areas in the map above are food-insecure and intensively farmed regions that are highly exposed to a potential five per cent or greater reduction in the length of the growing season. Such a change over the next 40 years could significantly affect food yields and food access for 369 million people—many of them smallholder farmers—already living on the edge. This category includes almost all of India and significant parts of West Africa. While Latin America in general is viewed as having a ‘high capacity’ to cope with such shifts, there are millions of poor people living in this region who very dependent on local crop production to meet their nutritional needs (map credit: ILRI-CCAFS/Notenbaert).

This study matches future climate change ‘hotspots’ with regions already suffering chronic food problems to identify highly-vulnerable populations, chiefly in Africa and South Asia, but potentially in China and Latin America as well, where in fewer than 40 years, the prospect of shorter, hotter or drier growing seasons could imperil hundreds of millions of already-impoverished people.

The report, Mapping Hotspots of Climate Change and Food Insecurity in the Global Tropics, was produced by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). The work was led by a team of scientists at the International Livestock Research Institute (ILRI) responding to an urgent need to focus climate change adaptation efforts on people and places where the potential for harsher growing conditions poses the gravest threat to food production and food security.

The researchers pinpointed areas of intense vulnerability by examining a variety of climate models and indicators of food problems to create a series of detailed maps. One shows regions around the world at risk of crossing certain ‘climate thresholds’—such as temperatures too hot for maize or beans—that over the next 40 years could diminish food production. Another shows regions that may be sensitive to such climate shifts because in general they have large areas of land devoted to crop and livestock production. And finally, scientists produced maps of regions with a long history of food insecurity.

Future of Pastoralism in Africa Conference

ILRI scientist Polly Ericksen, lead author of the hotspots study (photo credit: ILRI/MacMillan).

‘When you put these maps together they reveal places around the world where the arrival of stressful growing conditions could be especially disastrous,’ said Polly Ericksen, a senior scientist at ILRI, in Nairobi, Kenya and the study’s lead author. ‘These are areas highly exposed to climate shifts, where survival is strongly linked to the fate of regional crop and livestock yields, and where chronic food problems indicate that farmers are already struggling and they lack the capacity to adapt to new weather patterns.’

‘This is a very troubling combination,’ she added.

For example, in large parts of South Asia, including almost all of India, and parts of sub-Saharan Africa—chiefly West Africa—there are 265 million food-insecure people living in agriculture-intensive areas that are highly exposed to a potential five per cent decrease in the length of the growing period. Such a change over the next 40 years could significantly affect food yields and food access for people—many of them farmers themselves—already living on the edge.

Higher temperatures also could exact a heavy toll. Today, there are 170 million food-insecure and crop-dependent people in parts of West Africa, India and China who live in areas where, by the mid-2050s, maximum daily temperatures during the growing season could exceed 30 degrees Celsius (86 degrees Fahrenheit). This is close to the maximum temperature that beans can tolerate, while maize and rice yields may suffer when temperatures exceed this level. For example, a study last year in Nature found that even with optimal amounts of rain, African maize yields could decline by one percent for each day spent above 30ºC.

Regional predictions for shifts in temperatures and precipitation going out to 2050 were developed by analyzing the outputs of climate models rooted in the extensive data amassed by the Fourth Assessment Report (AR4) from the United Nations Intergovernmental Panel on Climate Change (IPCC). Researchers identified populations as chronically food-insecure if more than 40 per cent of children under the age of five were ‘stunted’—that is, they fall well below the World Health Organization’s height-for-age standards.

CCAFS poverty and climate change hotspots presentation: Wiebke Foerch and Patti Kristjanson of CCAFS

CCAFS staff members Wiebke Foerch, based at ILRI, and Patti Kristjanson, based at the World Agroforestry Centre, hold discussions after ILRI’s Polly Ericksen presents her findings on poverty and climate change hotspots at the World Agroforestry Centre in May 2011 (photo credit: ILRI/MacMillan).

‘We are starting to see much more clearly where the effect of climate change on agriculture could intensify hunger and poverty, but only if we fail to pursue appropriate adaptation strategies,’ said Patti Kristjanson, a research theme leader at CCAFS and former agricultural economist at ILRI. ‘Farmers already adapt to variable weather patterns by changing their planting schedules or moving animals to different grazing areas. What this study suggests is that the speed of climate shifts and the magnitude of the changes required to adapt could be much greater. In some places, farmers might need to consider entirely new crops or new farming systems.’

Crop breeders at CGIAR centres around the world already are focused on developing so-called ‘climate ready’ crop varieties able to produce high yields in more stressful conditions. For some regions, however, that might not be a viable option—in parts of East and Southern Africa, for example, temperatures may become too hot to maintain maize as the staple crop, requiring a shift to other food crops, such as sorghum or cassava, to meet nutrition needs. In addition, farmers who now focus mainly on crop cultivation might need to integrate livestock and agroforestry as a way to maintain and increase food production.

CCAFS Bruce Campbell following Andy Jarvis' seminar on CCAFS

Bruce Campbell, coordinator of the CGIAR program ‘Climate Change, Agriculture and Food Security (CCAFS)’, based in Copenhagen, talks with guests at a seminar given about CCAFS by Andy Jarvis at ILRI’s Nairobi campus on 13 May 2011 (photo credit: ILRI/MacMillan).

‘International trade in agriculture commodities is also likely to assume even more importance for all regions as climate change intensifies the existing limits of national agriculture systems to satisfy domestic food needs,’ said Bruce Campbell, director of CCAFS. ‘We have already seen with the food price spikes of 2008 and 2010 that food security is an international phenomenon and climate change is almost certainly going to intensify that interdependence.’

Ericksen and her colleagues note that regions of concern extend beyond those found to be most at risk. For example, in many parts of Latin America, food security is relatively stable at the moment—suggesting that a certain amount of ‘coping capacity’ could be available to deal with future climate stresses that affect agriculture production. Yet there is cause for concern because millions of people in the region are highly dependent on local agricultural production to meet their food needs and they are living in the very crosshairs of climate change.

The researchers found, for example, that by 2050, prime growing conditions are likely to drop below 120 days per season in intensively-farmed regions of northeast Brazil and Mexico.

Growing seasons of at least 120 days are considered critical not only for the maturation of maize and several other staple food crops, but also for vegetation crucial to feeding livestock.

In addition, parts of Latin America are likely to experience temperatures too hot for bean production, a major food staple in the region.

Mario Herrero, Polly Ericksen and Wiebke Foerch prepare to listen to Andy Jarvis' seminar on CCAFS

Mario Herrero, another ILRI author of the study, with climate Polly Ericksen and CCAFS staff member Wiebke Forech, all based at ILRI’s Nairobi headquarters, wait to hear a presentation from visiting CCAFS scientist Andy Jarvis at ILRI on 13 May 2011 (photo credit: ILRI/MacMillan).

The study also shows that some areas today have a ‘low sensitivity’ to the effects of climate change only because there is not a lot of land devoted to crop and livestock production. But agriculture intensification would render them more vulnerable, adding a wrinkle, for example, to the massive effort under way to rapidly expand crop cultivation in the so-called ‘bread-basket’ areas of sub-Saharan Africa.

Philip Thornton at Andy Jarvis' CCAFS Seminar

Philip Thornton (white shirt, facing camera), of ILRI and CCAFS, and other ILRI staff following a seminar on CCAFS given by Andy Jarvis at ILRI Nairobi on 13 May 2011 (photo credit: ILRI/MacMillan).

‘Evidence suggests that these specific regions in the tropics may be severely affected by 2050 in terms of their crop production and livestock capacity. The window of opportunity to develop innovative solutions that can effectively overcome these challenges is limited,’ said Philip Thornton, a CCAFS research theme leader and ILRI scientist and one of the paper’s co-authors. ‘Major adaptation efforts are needed now if we are to avoid serious food security and livelihood problems later.’
Five per cent reduction in crop season sensitivity to change capacity to cope: Corrected version

Areas where average maximum temperatures are expected to exceed 30⁰C by 2050, corrected version (map credit: ILRI-CCAFS/Notenbaert).

Read the whole report: Mapping hotspots of climate change and food insecurity in the global tropics, by Polly Ericksen, Philip Thornton, An Notenbaert, L Cramer, Peter Jones and Mario Herrero 2011. CCAFS Report no. 5 (final version). CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Also available online at: www.ccafs.cgiar.org.

Click here for the CCAFS online media room with more materials, including corrected versions of the news release in English, Spanish, French and Chinese, and also versions of the two maps shown here in high resolution suitable for print media.

All the maps will be made available online later this year; for more information on the maps, please contact ILRI’s Polly Ericksen at p.ericksen [at] cgiar.org or CCAFS’ Vanessa Meadu at ccafs.comms [at] gmail.com.

Note: This study was led by scientists at the International Livestock Research Institute (ILRI) for the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). CCAFS is a strategic partnership of the CGIAR and the Earth System Science Partnership (ESSP). CCAFS brings together the world’s best researchers in agricultural science, development research, climate science and Earth System science, to identify and address the most important interactions, synergies and tradeoffs between climate change, agriculture and food security. The CGIAR’s Lead Centre for the program is the International Center for Tropical Agriculture (CIAT) in Cali, Colombia. For more information, visit www.ccafs.cgiar.org.

Livestock and­ the environment: As the hard trade-offs look to get only get harder, more nuanced approaches to livestock development are needed

Boy and goats in Rajasthan

Ramand Ram with goats in his family’s plot in Rajasthan, India. Intensifying mixed crop-and-livestock farming and helping livestock keepers diversify their sources of income can protect livestock livelihoods (photo credit: ILRI/Mann).

Researchers say that poor countries can protect both livestock livelihoods and environments by promoting measures such as sustainably intensifying mixed crop-and-livestock farming, paying livestock keepers for the ecosystem services they provide, helping pastoralists diversify their sources of income and managing the demand for livestock products.

Researchers from the International Livestock Research Institute (ILRI), the Food and Agricultural Organization of the United Nations and the Animal Production Systems Group at Wageningen University, in the Netherlands, report in a proceedings published last November (2010) that there are ‘significant opportunities in livestock systems for improving environment management while also improving the livelihoods of poor people.’

The publication, titled The Role of Livestock in Developing Communities: Enhancing Multifunctionality, was co-published by the University of the Free State South Africa, the Technical Centre for Agricultural and Rural Cooperation and ILRI. The authors say that even though livestock production is already harming some environments, with such damage likely to increase in some regions in coming years due to an increasing demand from rapidly expanding populations in the developing world, new research-based options for livestock production can help improve both the livelihoods and environments of hundreds of millions of very poor people who raise farm animals or sell or consume their milk, meat and eggs.

The researchers propose shifting the debate on livestock and environment from one that focuses solely on the negative impacts of livestock production to one that embraces the complexity of livestock ‘goods’ and ‘bads’, particularly in developing countries, where livestock serve as a lifeline to many poor people.

The researchers say a good understanding of the environmental impacts of livestock production depends on distinguishing these impacts by region and production system and by addressing environmental problems along with problems of food insecurity and inequity.

The authors, who include ILRI scientists Mario Herrero, Phil Thornton, An Notenbaert, Shirley Tarawali and Delia Grace, recommend making a ‘fundamental shift’ in how demand for livestock products is seen and in adapting production systems to meet this demand. They suggest, for example, that policymakers consider ways of reducing demand for livestock products in (mostly industrialized) countries where (1) people are damaging their health by consuming too much meat, eggs and milk and (2) intensive ‘factory’ farming is damaging the environment.

The scientists also recommend finding ways of improving water management in livestock production. Recent findings show that livestock water use represents 31 per cent of the total water used for agriculture. The authors report that ‘in rangeland systems, water productivity can be improved by better rangeland management, which has the potential to reduce water use in agriculture by 45 per cent by 2050.’ Another promising idea is to begin paying livestock farmers for the rangeland water purification and other ecosystem services they maintain for the good of the wider community.

To reduce greenhouse gases from livestock systems, the authors recommend that efforts be put in place to intensify production systems in developing countries to produce more livestock products per unit of methane gas. ‘We need to provide significant incentives so that the marginal rangeland areas, often rich in biodiversity, can be protected for the benefit of farmers.’ Other options for reducing livestock-associated greenhouse gasses include improving animal diets, controlling animal numbers and shifting the kinds of breeds kept.

Although diseases transmitted between livestock and people also need to be addressed by research, the book notes that the ‘net effects of livestock on human health are positive,’ particularly due to livestock’s role in providing nourishing food for the poor and the contribution livestock herders make to regulating vast rangeland ecosystems, with their wildlife populations, which often helps prevent animals diseases from spilling over to human populations. Better use of disease control methodologies and investments will also help prevent the spread of these diseases.

The authors acknowledge that such changes in the way that livestock production is viewed will require a ‘subtle balancing act’ and commitments by a wide range of players in the scientific, development and policymaking communities. But without a more nuanced understanding of livestock production in the face of hard trade-offs between livestock and the environment, we could jeopardize the livestock livelihoods of many of the world’s ‘bottom billion’.

This article is summary of the chapter ‘The Way Forward for Livestock and the Environment’ in the The Role of Livestock in Developing Communities: Enhancing Multifunctionality.

Download the full text

For more information read this related ILRI News article.

The end of maize in Africa? A much warmer world calls for completely new ways of farming and consuming

Philip Thornton, CCAFS/ILRI

A newscaster from Kenya Television Network Local interviews Philip Thornton on the impacts of climate change on the African continent (photo credit: ILRI).

A new publication, Agriculture-Climate Letters, published by the Climate Change, Agriculture and Food Security program, this week highlight a paper published on the impacts of a 4ºC warmer world on African agriculture and food security. The lead author of the paper is Philip Thornton, an agricultural systems analyst with the International Livestock Research Institute (ILRI).

‘. . . The UK Met Office says a 4 degree [warmer] world is quite possible, and will plausibly be reached by 2070 or even 2060–in our children’s lifetimes. This will mean average temperature rises of a massive 15ºC in the Arctic, and 3-8ºC in the world’s most populated areas.

‘. . . Agriculture is highly sensitive even to a 2 degree scenario; a 4 degree world is beyond the bounds of both local and global knowledge, both modern and historical experience. . . .

‘A new paper, Agriculture and food systems in sub-Saharan Africa in a four-plus degree world, by Philip Thornton, Peter Jones, Polly Ericksen and Andrew Challinor, foresees profound effects. . . . [E]nsembles of models suggest average yield drops of 19% for maize and 47% for beans, and much more frequent crop failures. . . . Africa-wide, a massive 1.2 million km2 may be forced to flip from typical mixed farms, with both crops and livestock, into pure rangeland. . . .

‘Thus a 4 degree world calls for adaptive capacity in agriculture that is not just about increasing the resilience of current systems, but about completely new ways of farming and consuming. . . . Thornton and colleagues highlight four areas for immediate policy attention:

  • supporting farmers’ own risk-management strategies
  • strengthening basic data collection in agriculture
  • investing seriously in genebanks
  • improving governance of food systems so that poor people can get affordable food

‘. . . Rapidly urbanising populations will need to eat nationally and regionally grown food. If +4 degrees signals the end to half a millennium of Africans eating maize, will the 21st century usher in a new era of indigenous urban foods, be they free-range hamburgers or drought-resistant yamburgers?

Read the whole article at AgClim Letters: Hamburgers and yamburgers? Four-degree futures for food in Africa, 1 November 2010.

Subscribe to receive the monthly science-policy bulletin AgClim Letters in your inbox.

Read the science paper by Philip Thornton et al. in the British journal Philosophical Transactions of the Royal [Society] Series A: Agriculture and food systems in sub-Saharan Africa in a four-plus degree world, 29 November 2010.

Prognosis for African food security in a 4ºC+ warmer world is bleak–Philip Thornton

Philip Thornton, CCAFS/ILRI

Kenya Television Network interviews Philip Thornton on the impacts of climate change to the African continent (photo credit: ILRI).

Bottom line implication: A 4-degree warmer world calls for adaptive capacity in agriculture that is not just about increasing the resilience of current systems but about completely new ways of farming and consuming.

The Guardian this week quotes agricultural systems analyst Philip Thornton, of the International Livestock Research Institute (ILRI), on the severe impacts that a 4ºC rise in temperature, now expected to occur within this century, will have on African livelihoods and food production.

'A hellish vision of a world warmed by 4ºC within a lifetime has been set out by an international team of scientists, who say the agonisingly slow progress of the global climate change talks that restart in Mexico today makes the so-called safe limit of 2ºC impossible to keep. A 4ºC rise in the planet's temperature would see severe droughts across the world and millions of migrants seeking refuge as their food supplies collapse.

'"There is now little to no chance of maintaining the rise in global surface temperature at below 2ºC, despite repeated high-level statements to the contrary," said Kevin Anderson, from the University of Manchester, who with colleague Alice Bows contributed research to a special collection of Royal Society journal papers published tomorrow. "Moreover, the impacts associated with 2ºC have been revised upwards so that 2ºC now represents the threshold [of] extremely dangerous climate change.". . .

'Rachel Warren, at the University of East Anglia, described a 4ºC world in her research paper: "Drought and desertification would be widespread. . . . There would be a need to shift agricultural cropping to new areas, impinging on [wild] ecosystems. Large-scale adaptation to sea-level rise would be necessary. Human and natural systems would be subject to increasing levels of agricultural pests and diseases, and increases in the frequency and intensity of extreme weather events."

'Warren added: "This world would also rapidly be losing its ecosystem services, owing to large losses in biodiversity, forests, coastal wetlands, mangroves and saltmarshes [and] an acidified and potentially dysfunctional marine ecosystem. In such a 4ºC world, the limits for human adaptation are likely to be exceeded in many parts of the world.". . .

'In sub-Saharan Africa, "the prognosis for agriculture and food security in a 4ºC world is bleak", according Philip Thornton, of Kenya's International Livestock Research Institute, who led another research team. He notes there will be an extra billion people populating the continent by 2050.

'"Croppers and livestock keepers in sub-Saharan Africa have in the past shown themselves to be highly adaptable to short- and long-term variations in climate. But the kind of changes that would occur in a 4ºC+ world would be way beyond anything experienced in recent times. It is not difficult to envisage a situation where the adaptive capacity and resilience of hundreds of millions of people could simply be overwhelmed by events," Thornton's team concludes. . . .'

Read the whole article at the Guardian: Climate change scientists warn of 4C global temperature rise, 29 November 2010.

‘The limits of human–and natural systems–adaptations are likely to be exceeded’–Climate change researcher Rachel Warren

A 4-degree C warmer world

Projections of global warming relative to pre-industrial for the A1FI emissions scenario—the one we’re currently on. Dark shading shows the mean ±1 standard deviation for the tunings to 19 AR4 GCMs [IPCC Fourth Assessment General Circulation Models]  and the light shading shows the change in the uncertainty range when . . . climate-carbon-cycle feedbacks . . . are included. Published in a Royal Society special issue on climate change, 29 November 2010 (graphic credit: Philosophical Transactions of the Royal Society Series A, Special Issue, 29 November 2010).

An article in the highly regarded Climate Progress website names a paper by agricultural systems analyst Philip Thornton, of the International Livestock Research Institute (ILRI), titled ‘Agriculture and food systems in sub-Saharan Africa [SSA] in a 4°C+ world’, as one of the more important articles appearing in a current special issue on climate change of the Philosophical Transactions of the Royal Society Series A.

‘”In . . .  a 4°C [warmer] world, the limits for human adaptation are likely to be exceeded in many parts of the world, while the limits for adaptation for natural systems would largely be exceeded throughout the world.”

‘One of the greatest failings of the climate science community (and the media) is not spelling out as clearly as possible the risks we face on our current emissions path, as well as the plausible worst-case scenario, which includes massive ecosystem collapse. So much of what the public and policymakers think is coming is a combination of:

  • The low end of the expected range of warming and impacts based on aggressive policies to reduce emissions (and no serious carbon-cycle feedbacks)
  • Analyses of a few selected impacts, but not an integrated examination of multiple impacts
  • Disinformation pushed by the anti-science, pro-pollution crowd

‘In fairness, a key reason the scientific community hasn’t studied the high emissions scenarios much until recently because they never thought humanity would be so self-destructive as to ignore their warnings for so long, which has put us on the highest emissions path (see U.S. media largely ignores latest warning from climate scientists: “Recent observations confirm … the worst-case IPCC scenario trajectories (or even worse) are being realised”—1000 ppm [A1FI]).

‘A special issue of the Philosophical Transactions of the Royal Society A, “Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications,” lays out this 4°C (7°F) world. Warming of 7ºF is certainly not the worst-case in the scientific literature (see M.I.T. doubles its 2095 warming projection to 10°F—with 866 ppm and Arctic warming of 20°F and “Our hellish future: Definitive NOAA-led report on U.S. climate impacts warns of scorching 9 to 11°F warming over most of inland U.S. by 2090 with Kansas above 90°F some 120 days a year — and that isn’t the worst case, it’s business as usual!”).

‘But for the first time, “A hellish vision of a world warmed by 4ºC within a lifetime has been set out by an international team of scientists,” as the UK’s Guardian describes it:

‘A 4ºC rise in the planet’s temperature would see severe droughts across the world and millions of migrants seeking refuge as their food supplies collapse.

‘These papers began as conference presentations . . . . In a must-read paper that is the source of the top figure, “When could global warming reach 4°C?” Betts et al. drop this bombshell:

‘”Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC’s ‘likely range’.”. . .

‘Another important Royal Society article is the concluding piece, “The role of interactions in a world implementing adaptation and mitigation solutions to climate change,” by Rachel Warren.  She makes a crucial point that is all too neglected in most discussions of adaptation — it is the interaction of impacts that is likely to overwhelm, particularly when you consider the very real risk of eco-system collapse over large parts of the Earth:

‘”… a 4°C world would be facing enormous adaptation challenges in the agricultural sector, with large areas of cropland becoming unsuitable for cultivation, and declining agricultural yields. This world would also rapidly be losing its ecosystem services, owing to large losses in biodiversity, forests, coastal wetlands, mangroves and saltmarshes, and terrestrial carbon stores, supported by an acidified and potentially dysfunctional marine ecosystem. Drought and desertification would be widespread, with large numbers of people experiencing increased water stress, and others experiencing changes in seasonality of water supply. There would be a need to shift agricultural cropping to new areas, impinging on unmanaged ecosystems and decreasing their resilience; and large-scale adaptation to sea-level rise would be necessary. Human and natural systems would be subject to increasing levels of agricultural pests and diseases, and increases in the frequency and intensity of extreme weather events.

‘”In such a 4°C world, the limits for human adaptation are likely to be exceeded in many parts of the world, while the limits for adaptation for natural systems would largely be exceeded throughout the world. Hence, the ecosystem services upon which human livelihoods depend would not be preserved. Even though some studies have suggested that adaptation in some areas might still be feasible for human systems, such assessments have generally not taken into account lost ecosystem services. . . .

‘. . . [T]here are several important articles, like “Agriculture and food systems in sub-Saharan Africa [SSA] in a 4°C+ world,” which concludes:

‘The prognosis for agriculture and food security in SSA in a 4°C+ world is bleak. Already today, the number of people at risk from hunger has never been higher: it increased from 300 million in 1990 to 700 million in 2007, and it is estimated that it may exceed 1 billion in 2010. The cost of achieving the food security Millennium Development Goal in a +2°C world is around $40–60 billion per year, and without this investment, serious damage from climate change will not be avoided. Currently, the prospects for such levels of sustained investment are not that bright. Croppers and livestock keepers in SSA have in the past shown themselves to be highly adaptable to short- and long-term variations in climate, but the kind of changes that would occur in a 4°C+ world would be way beyond anything experienced in recent times. There are many options that could be effective in helping farmers adapt even to medium levels of warming, given substantial investments in technologies, institution building and infrastructural development, for example, but it is not difficult to envisage a situation where the adaptive capacity and resilience of hundreds of millions of people in SSA could simply be overwhelmed by events. . . .

Read the whole article at Climate Progress: Royal Society special issue details ‘hellish vision’ of 7°F (4°C) world—which we may face in the 2060s!, 20 November 2010.

Scientists warn of farm failures and climate migrants in Africa in a 4-plus degree world

Maize farming in Mozambique

Smallholder maize and livestock farm in Pacassa Village, in Tete Province, Mozambique (photo credit: ILRI/Mann).

As climate change negotiations begin this week in Mexico, a new study published in the journal Philosophical Transactions of the Royal Society Series A, examining the potential impact of a four-degree temperature increase on food production in sub-Saharan Africa, reports that growing seasons of much of the region’s cropped areas and rangelands will be reduced in length by the 2090s, seriously damaging the ability of these lands to grow food.

Painting a bleak picture of Africa’s food production in a 'four-plus degree world,' the study sends a strong message to climate negotiators at a time when they are trying to reach international consensus on measures needed to keep average global temperatures from rising by more than two degrees Centigrade in this century. The study calls for concerted efforts to help farmers cope with potentially unmanageable impacts of climate change.

In most of southern Africa, growing seasons could be shortened by about 20 per cent, according to the results of simulations carried out using various climate models. Growing seasons may actually expand modestly in eastern Africa. But despite this, for sub-Saharan Africa as a whole, a temperature increase of five degrees by the 2090s is expected to depress maize production by 24 per cent and bean production by over 70 per cent.

'Africa’s rural people have shown a remarkable capacity to adapt to climate variability over the centuries,' said lead author Philip Thornton, with the Kenya-based International Livestock Research Institute (ILRI), which forms part of the Consultative Group on International Agricultural Research (CGIAR). 'But temperature increases of four degrees or more could create unprecedented conditions in dozens of African countries, pushing farmers beyond the limits of their knowledge and experience.' 

It seems unlikely that international climate policies will succeed in confining global warming to a two-degree increase, and even this will require unprecedented political will and collective action, according to the study.

Many options are already available that could help farmers adapt even to medium levels of warming, assuming substantial investment in new technology, institution building, and infrastructure development, for example. But it is quite possible that the adaptive capacity and resilience of hundreds of millions of people in Africa could simply be overwhelmed by events, say the authors.

The rate of cropping season failure will increase in all parts of the region except Central Africa, according to study results. Over a substantial part of eastern Africa, crops already fail in one out of every four years. By the 2090s, higher temperatures will greatly expand the area where crops fail with this frequency. And much of southern Africa’s rainfed agriculture could fail every other season.

'More frequent crop failures could unleash waves of climate migrants in a massive redistribution of hungry people,' said Thornton. 'Without radical shifts in crop and livestock management and agricultural policies, farming in Africa could exceed key physical and socio-economic thresholds where the measures available cease to be adequate for achieving food security or can’t be implemented because of policy failures.'

'This is a grim prospect for a region where agriculture is still a mainstay of the economy, occupying 60 per cent of the work force,' said Carlos Seré, Director General of ILRI. 'Achieving food security and reducing poverty in Africa will require unprecedented efforts, building on 40 years of modest but important successes in improving crop and livestock production.'

To help guide such efforts, the new study takes a hard look at the potential of Africa’s agriculture for adapting successfully to high temperatures in the coming decades; the study also looks at the constraints to doing so.

Buffering the impacts of high temperatures on livestock production will require stronger support for traditional strategies, such as changing species or breeds of animals kept, as well as for novel approaches such as insurance schemes whose payouts are triggered by events like erratic rainfall or high animal death rates, according to the study.

However, Thornton says that uncertainty about the specific impacts of climate change at the local level, and Africa’s weak, poorly resourced rural institutions, hurt African farmers' ability to adopt such practices fast enough to lessen production losses. Moreover, governments may not respond to the policy challenges appropriately, as demonstrated by the 2008 food crisis, when many countries adopted measures like export bans and import tariffs, which actually worsened the plight of poor consumers.

The study recommends four actions to take now to reduce the ways climate change could harm African food security.

1.     In areas where adverse climate change impacts are inevitable, identify appropriate adaptation measures and pro-actively help communities to implement them.

2.     Go 'back to basics' in collecting data and information. Land-based observation and data-collection systems in Africa have been in decline for decades. Yet information on weather, land use, markets, and crop and livestock distributions is critical for responding effectively to climate change. Africa’s data-collection systems could be improved with relatively modest additional effort.

3.     Ramp up efforts to maintain and use global stocks of crop and livestock genetic resources to help Africa’s crop and livestock producers adapt to climate change as well as to the shifts in disease prevalence and severity that such change may bring.

4.     Build on lessons learned in the global food price crisis of 2007–2008 to help address the social, economic and political factors behind food insecurity.

The CGIAR and the Earth System Science Partnership recently embarked on the most comprehensive program developed so far to address both the new threats and new opportunities that global warming is likely to cause agriculture in the world’s developing countries. The Climate Change, Agriculture and Food Security program assembles relevant experts to work with decision makers at all levels—from government ministries to farmers’ fields—to translate knowledge into effective action.

The ILRI study underlines the urgency and importance of that research. It will inform the discussions of some 500 policy makers, farmers, scientists and development experts expected to attend an ‘Agriculture and Rural Development Day’, on 4 December, which will be held alongside a two-week United Nations Conference on Climate Change taking place in Cancún, Mexico. Participants at the one-day event will identify agricultural development options for coping with climate change and work to move this key sector to the forefront of the international climate debate.

'A four-plus degree world will be one of rapidly diminishing options for farmers and other rural people,' said Seré. 'We need to know where the points of no return lie and what measures will be needed to create new options for farmers, who otherwise may be driven beyond their capacity to cope.'

For more information on the program on Climate Change, Agriculture and Food Security, visit www.ccafs.cgiar.org

With no ‘Marshall Plan’ for transiting to a non-carbon economy, we need research to develop ways to adapt to a warmer world

Setting out to weed a sorghum crop in Niger

A youth sets out with his weeding tool to tend to his family's crop of sorghum in Katanga Village, near Fakara, in Niger (photo credit: ILRI/Mann).

Along with many other major media, Discovery News reported yesterday on a collection of research papers just published that agree that our world is likely to warm by four degrees Centigrade by the end of this century. Among the scientists quoted in these media reports is agricultural systems analyst Philip Thornton, of the International Livestock Research Institute (ILRI), on what the likely impacts will be on agriculture in sub-Saharan Africa. The researchers concur that research to develop new means to adapt to a warmer world are critically needed. Publication of these science papers comes at the start of the United Nations Climate Change Conference being held in Cancún, Mexico.

'Since the late 1990s, many researchers and policy makers have held a two-degree Celsius (3.6-degree Fahrenheit) global temperature increase relative to pre-industrial times as a benchmark limit for global warming, saying that keeping warming below this threshold increases the likelihood that catastrophic changes can be avoided.

'But we are hardly on track to meet that target, researchers say, and an average global warming of four degrees Celsius (7.2 degrees Fahrenheit) by the end of this century is more likely than two.

'In a collection of papers published today in the Philosophical Transactions of the Royal Society A, researchers paint a picture of what a four-degree warmer world might look like, including changes in agriculture and water supply, ecosystems, sea level rise and the displacement of populations.

'"People are talking about two degrees but the chances of actually delivering on that are pretty slim," said Mark New of Oxford University, United Kingdom, one of the researchers who compiled the collection.

'"If we had a kind of a Marshall Plan to transform every major economy to a non-carbon based economy over the next 15 years, it's doable. But that's not going to happen. A lot of work suggests that the most likely outcome is between three and four (degrees increase) with it very likely to be more than four."

'Four degrees would only be a global average. Air over land will warm more than over the oceans, and some places will warm more than others.

'Dry areas are likely to get drier, according to a study of water supply done by New and others, which could have severe implications for agriculture.

'A team led by [Philip] Thornton of the International Livestock Research Institute used models to project the effect of a four-degree temperature increase on crop production in sub-Saharan Africa.

'"The rate of crop failure in southern Africa increases to nearly one in every two years," New said of the study. "You can't continue to rely on your existing crops or practices. There's going to have to be some kind of a transformation."

'"Most of these countries have low capacity to adapt," he added. . . .

'"Some of the impacts could be overcome if society takes adaptive action, but the difference between adapting at two degrees and at four degrees is very different," New said. "There needs to be research into technologies to assist adaptation just as much as we need research into technology for moving out of a carbon based transportation system." . . .'

Read the whole article at Discovery News: The world: Four degrees warmer, 29 November 2010.

Read Philip Thornton’s science paper in Philosophical Transactions of the Royal Society AAgriculture and food systems in sub-Saharan Africa in a 4 ° C + world, 29 November 2010.

Joint efforts needed to help Nepalese livestock owners combat climate change

Why is climate change so important to agriculture-based countries?

Slide from ILRI presentation made at Nepal livestock and climate change workshop in October 2010: 'Adapting livestock systems to climate change in South Asia,' by Mario Herrero, Philip Thornton and Iain Wright (Graphic credit: de Jong 2005, World Bank 2005).

Participants in a workshop on livestock and climate change held last week in Kathmandu, Nepal, have called for greater collaboration in work to help Nepalese livestock producers adapt to climate change.

At the opening session of a ‘Consultative Technical Workshop on Climatic Change: Livestock Sector Vulnerability and Adaptation in Nepal’, held 28–29 October 2010, Iain Wright, regional representative for Asia at the International Livestock Research Institute (ILRI), said that the challenges of climate change in Nepal were too great for any one organization to tackle on its own.

‘Researchers’, Wright said, ‘must work more closely with governmental, non-governmental and international organizations, as well as with aid agencies and local communities, to help Nepal reduce the vulnerability of its livestock sector, and the many people who depend on it, to climate change.

Nepal, a landlocked Himalayan country with a human population 27 million, is ranked as one of the world’s poorest countries (142 of 147) by the recent Human Development Report, with one-third of the population living below the poverty line and a per capita annual income of just US$250. More than three-quarters of the population (85%) lives in rural areas and the agricultural sector employs 66% of the labour force and contributes 38% of the country’s gross domestic product.

A ‘Climate Change Vulnerability Index’ compiled by a UK-based firm, Maplecroft, has recently placed Nepal as the world’s fourth most vulnerable country to climate change, while the country produces less than 0.025% of the global greenhouse gas emissions.

Recent climate change scenarios suggest that mean temperatures in parts of Nepal are likely to rise faster than the global average, especially at higher altitudes, leading to less snow and ice. Farmers in the mountains are already feeling the effects of the higher temperatures. More climatic variability and extreme climatic events, including floods and droughts, are expected in future. Researchers anticipate an overall increase in precipitation in the region’s wet season, but a decrease in precipitation in the mid-latitude hills. Nepal’s relatively low rates of development render its population particularly vulnerable to these ongoing and future climate changes.

Nepal’s Minister for Agriculture and Cooperatives, Mrigendra K Singh Yadav, told the workshop participants that measures to adapt to climate change are necessary to protect the country’s many small-scale farmers. Tek Gurung, Director of Livestock and Fisheries with the Nepal Agricultural Research Council, called the workshop ‘a milestone’.

‘This is the first time that the main stakeholders in Nepal’s livestock development have come together with international organizations to assess the vulnerability of the livestock sector to climate change and to determine ways to increase the sector’s resilience,’ Gurung said.

‘While Nepal’s contribution to global greenhouse gas emissions is trivial’, Wright explained, ‘it is one of the countries that will be affected most by climate change. Therefore, it does not make sense for Nepal to devote its scarce resources to research on ways to mitigate the effects of agriculture on climate change.’

‘Rather’, Wright said, ‘we urgently need to develop strategies that will allow poor Nepalese farmers and herders, who are among most vulnerable people in the world, to cope with changes in climate. We know the livestock sector will be affected by these changes, but there is a dearth of information and data on exactly what those consequences will be.'

The workshop was organized by the Nepal Agricultural Research Council in partnership with ILRI; Local Initiatives for Biodiversity, Research and Development (a non-governmental organization in Nepal); and Heifer Project International–Nepal.

See the slide presentation made at the workshop by ILRI scientists Mario Herrero, Philip Thornton and Iain Wright: Adapting livestock systems to climate change in South Asia.

Greener pastures and better breeds could reduce carbon ‘hoofprint’

Baoshan Community Dairy Feeding Centre

Cows at the Boashan Community Dairy Feeding Centre, in Yunnan Province, China (photo credit: ILRI / Mann).

A new study by the International Livestock Research Institute (ILRI) finds reductions in greenhouse gasses could be worth a billion dollars to poor livestock farmers if they could sell saved carbon on international markets.

Greenhouse gas emissions caused by livestock operations in tropical countries—a major contributor to climate change—could be cut significantly by changing diets and breeds and improving degraded lands, according to a new study published today in the U.S. Proceedings of the National Academy of Sciences. And as an added bonus, scientists found the small changes in production practices could provide a big payoff by providing poor farmers with up to US$1.3 billion annually in payments for carbon offsets.

'These technologically straightforward steps in livestock management could have a meaningful effect on greenhouse gas build-up, while simultaneously generating income for poor farmers,' said Philip Thornton, of ILRI, who co-authored the paper with ILRI’s Mario Herrero.  

Livestock enterprises contribute about 18% of the world’s greenhouse gases, largely through deforestation to make room for livestock grazing and feed crops, the methane ruminant animals give off, and the nitrous oxide emitted by manure. Many worry these greenhouse gas emissions could grow due to increased livestock production to meet surging demand for meat and milk in developing countries.

Thornton and Herrero believe there are options readily available to prevent up to 417 million tons of carbon dioxide expected to be produced by livestock in tropical countries by 2030—a sum representing a savings of about 7% of all livestock-related global greenhouse gas emissions.

'Of course,' says Thornton, 'if we also manage to bring down consumption of meat and milk in rich countries, the amount of carbon saved will be even greater.' The difference between livestock production in rich and poor countries is a big concern to Thornton. 'We conducted this study to try to disentangle some of the complexities surrounding livestock systems, particularly those in developing countries. Livestock systems are not all the same, and there are large differences in their carbon footprint, their importance for the poor, and their mitigation potential.'

Most reductions of livestock-produced greenhouse gases would have to come from the more than half a billion livestock keepers in tropical countries. But the study finds that these struggling farmers could be motivated to adopt more climate-friendly practices.

'It would be a useful incentive if these farmers were allowed to sell the reductions they achieve as credits on global carbon markets,' Thornton said. 'We found that at US$20 per ton—which is what carbon was trading for last week on the European Climate Exchange—poor livestock keepers in tropical countries could generate about US$1.3 billion each year in carbon revenues.' Although carbon payments would not amount to a lot more income for each individual farmer (such payments might represent an increase in individual income of up to 15%), such payments should provide a tipping point for many smallholders considering intensifying their livestock production.

According to the ILRI study, livestock-related greenhouse gas reductions could be quickly achieved in tropical countries by modifying production practices, such as switching to more nutritious pasture grasses, supplementing diets with even small amounts of crop residues or grains, restoring degraded grazing lands, planting trees that both trap carbon and produce leaves that cows can eat, and adopting more productive breeds.

'We wanted to consider the impact in tropical countries because they are at the epicentre of a livestock revolution,' said Herrero. 'We expect consumption of milk and meat to roughly double in the developing world by 2050, which means it’s critical to adopt sustainable approaches now that contain and reduce the negative effects of livestock production, while allowing countries to realize the benefits, such as better nutrition and higher incomes for livestock-producing households.'

Herrero and Thornton said that changing diets and breeds could increase the amount of milk and meat produced by individual animals, thus reducing emissions because farmers would require fewer animals. For example, in Latin America, they note that switching cows from natural grasslands to pastures sown with a more nutritious grass called Brachiaria can increase daily milk production and weight gain by up to three-fold. This increase, they said, means fewer animals are needed to satisfy demand. In addition, Brachiaria also absorbs, or 'sequesters,' more carbon than degraded natural grasslands.

'Even if only about 30% of livestock owners in the region switch from natural grass to Brachiaria, which is what we consider a plausible adoption rate, that alone could reduce carbon dioxide emissions by about 30 million tons per year,' Thornton said.

Herrero and Thornton also said that, for a given level of demand, fewer animals would be needed if more farmers supplemented grazing with feed consisting of crop residues (often called 'stover'), such as the leaves and stalks of sorghum or maize plants, or with grains. In addition, they note there is the potential to boost production per animal by crossbreeding local with genetically improved breeds, the latter of which can provide more milk and meat than traditional breeds while emitting less methane per kilo of meat or milk produced.

Planting trees that have agricultural and feed uses, a practice known as 'agroforestry,' has the benefit of reducing feed costs for animals, while the trees themselves absorb carbon. Herrero and Thornton found that of the 33 million tons of carbon dioxide that could be reduced through wider use of agroforestry in livestock operations, almost two-thirds of it—72%—would come from the 'carbon sequestration' effects of the trees.

Carols Seré, ILRI’s Director General, said Thornton and Herrero’s work usefully steers the discussion of livestock’s contribution to climate change from blunt criticism of the impact of farm animals to meaningful efforts to address the environmental consequences of their increased production.

'There is a tendency today to simply demonize livestock as a cause of climate change without considering their importance, particularly for poor farmers in the developing world,' Seré said.

'Most of the farmers we work with have a relatively small environmental footprint,' he added, 'and they are intensely dependent on their animals for food, for income, and even as "engines" to plough their fields and transport their crops. What these farmers need are technological options and economic incentives that help them intensify their production in sustainable ways. Carbon payments would be a welcome additional incentive inducing such changes in smallholder livestock production.'

Key messages from the publication
(1) The impact of any given livestock intervention on mitigating total greenhouse gas emissions will be small.
To make a difference, we will need to implement many interventions and do so simultaneously. Mitigating the impacts of livestock systems on climate change will require taking a series of small incremental steps and implementing a wide range of different mitigation strategies to reduce carbon dioxide, methane and nitrous oxide emissions.

(2) We should aim for fewer, better fed, farm and herd animals.
Apart from strategies to sequester greater amounts of carbon, all strategies for mitigating greenhouse gases appear to require the intensification of animal diets and a reduction in animal numbers to produce the same volume of meat and milk.

(3) Ways to mitigate greenhouse gases in tropical livestock systems are technologically straightforward.
Apart from strategies to sequester carbon, all strategies for mitigating greenhouse gas emissions tested could be implemented at farm level with the appropriate economic and other incentives for resource-poor farmers.

(4) GHG mitigation strategies can be pro-poor.
Paying small-scale livestock farmers and herders for practices that help sequester carbon (under REDD or similar incentive schemes), although not trivial in management terms, would help smallholders generate greater and more diversified incomes.

(5) Mitigation strategies can also support strategies to help smallholders adapt to climate change.
Some interventions aiming to reduce greenhouse gases will also serve to help people cope with more unpredictable and extreme weather.

(6) All strategies will need to include appropriate incentives for smallholders.
A major incentive for small-scale livestock producers to change their production practices will be the increasing demand for livestock products in developing countries. But many smallholders will also need other economic incentives and more user-friendly technologies in order to make even straightforward changes in their production practices. 

Read the whole paper at the Proceedings of the National Academy of Sciences: The potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics, 6 September 2010.

Livestock background paper for World Development Report 2010: Development in a changing climate

Household takes refuge from the rain in central Malawi

Household takes refuge from the rain in central Malawi (photo by ILRI/Mann).

A paper on livestock and climate change—'The inter-linkages between rapid growth in livestock production, climate change, and the impacts on water resources, land use, and deforestation'—was prepared as a background paper to the World Bank’s acclaimed World Development Report 2010: Development in a Changing Climate. It was written by two agricultural systems analysts at the International Livestock Research Institute (ILRI), Philip Thornton and Mario Herrero.

The following is the abstract to the paper.

'Livestock systems globally are changing rapidly in response to human population growth, urbanization, and growing incomes. This paper discusses the linkages between burgeoning demand for livestock products, growth in livestock production, and the impacts this may have on natural resources, and how these may both affect and be affected by climate change in the coming decades.

'Water and land scarcity will increasingly have the potential to constrain food production growth, with adverse impacts on food security and human well-being. Climate change will exacerbate many of these trends, with direct effects on agricultural yields, water availability, and production risk.

'In the transition to a carbon-constrained economy, livestock systems will have a key role to play in mitigating future emissions. At the same time, appropriate pricing of greenhouse gas emissions will modify livestock production costs and patterns. Health and ethical considerations can also be expected to play an increasing role in modifying consumption patterns of livestock products, particularly in more developed countries.

'Livestock systems are heterogeneous, and a highly differentiated approach needs to be taken to assessing impacts and options, particularly as they affect the resource-poor and those vulnerable to global change. Development of comprehensive frameworks that can be used for assessing impacts and analyzing trade-offs at both local and regional levels is needed for identifying and targeting production practices and policies that are locally appropriate and can contribute to environmental sustainability, poverty alleviation, and economic development.'

About the World Development Report 2010:
'Today's enormous development challenges are complicated by the reality of climate change─the two are inextricably linked and together demand immediate attention. Climate change threatens all countries, but particularly developing ones. Understanding what climate change means for development policy is the central aim of the World Development Report 2010.

'Estimates are that developing countries would bear some 75 to 80 percent of the costs of anticipated damages caused by the changing climate. Developing countries simply cannot afford to ignore climate change, nor can they focus on adaptation alone. So action to reduce vulnerability and lay the groundwork for a transition to low-carbon growth paths is imperative.

'The World Development Report 2010 explores how public policy can change to better help people cope with new or worsened risks, how land and water management must adapt to better protect a threatened natural environment while feeding an expanding and more prosperous population, and how energy systems will need to be transformed.

'The authors examine how to integrate development realities into climate policy─in international agreements, in instruments to generate carbon finance, and in steps to promote innovation and the diffusion of new technologies.

'The World Development Report 2010 is an urgent call for action, both for developing countries who are striving to ensure policies are adapted to the realities and dangers of a hotter planet, and for high-income countries who need to undertake ambitious mitigation while supporting developing countries efforts.

'The authors argue that a climate-smart world is within reach if we act now to tackle the substantial inertia in the climate, in infrastructure, and in behaviors and institutions; if we act together to reconcile needed growth with prudent and affordable development choices; and if we act differently by investing in the needed energy revolution and taking the steps required to adapt to a rapidly changing planet.'

Read more of ILRI livestock background paper: World Bank Policy Research Working Paper, 'The inter-linkages between rapid growth in livestock production, climate change, and the impacts on water resources, land use, and deforestation', 2010, by Philip Thornton and Mario Herrero.