Traditional knowledge key to managing outbreaks of Rift Valley fever: Study points out important role livestock keepers play in veterinary surveillance

Orma Boran cattle crossing a river in Kenya

Orma Boran cattle crossing a river in Kenya. Cattle and people both can be infected with Rift Valley fever (Photo credit: R Dolan)

Livestock researchers say the traditional knowledge of local pastoralists in East Africa needs to be included in programs to better control livestock diseases in the region.

Somali and Maasai herder early warning systems both were key in identifying the risk factors and symptoms of Rift Valley fever in an outbreak in 2006/7.

Rift Valley fever is an acute viral zoonosis spread by mosquitoes. It primarily affects domestic livestock such as cattle, camels, sheep and goats, but can also infect, and kill, people, especially those handling infected animals.

First isolated in humans in the Rift Valley region of Kenya in 1930, until the 1970s Rift Valley fever was reported mainly in southern and eastern Africa, primarily Kenya, where it was considered an animal disease, despite sporadic human cases. But after the 1970s, explosive outbreaks occurred in human populations throughout Africa, Indian Ocean states and the Arabian Peninsula. Epidemics in Egypt in 1977/8 and in Kenya in 1997/8 each killed several hundred people. Another outbreak in Kenya in 2006/7 killed more than 100 people.

In East Africa, Rift Valley fever outbreaks have coincided with heavy rainfall and local flooding, which can lead to expansion of mosquito populations. In an assessment made to review lessons from the 2006/7 outbreak in East Africa carried out by scientists from the International Livestock Research Institute (ILRI) and the Kenyan and Tanzanian departments of veterinary services, researchers found that Somali pastoralists of northeastern Kenya accurately assessed the likelihood of an outbreak based on their assessments of key risk factors, and they did so long before veterinary and public health interventions began. The study also looked at the experiences of Maasai herders of northern Tanzania, who accurately recognized symptoms such as high abortion rates as indicating the presence of the infection in their herds.

Among the environmental factors the Somali communities noticed as likely to lead to an outbreak is an increase in rainfall (usually accompanied by floods) and an increase in mosquitoes. Both preceded the 2006/7 outbreak and had been present in the last outbreak of Rift Valley fever in the region in 1997/8. The Somalis also accurately associated a ‘bloody nose’, or Sandik, in their animals with Rift Valley fever.

The role of this traditional knowledge in predicting Rift Valley fever is the subject of a paper, ‘Epidemiological assessment of the Rift Valley fever outbreak in Kenya and Tanzania in 2006 and 2007’, published in the August 2010 supplement of the American Journal of Tropical Medicine and Hygiene.

The authors say that Somali pastoralists are particularly able to predict not only the symptoms of Rift Valley fever in their animals but also the likelihood of an outbreak of the disease. Indeed, observations by local communities in risk-prone areas were often more timely and definitive than the global early warning systems in use at the time of the 2006/7 outbreak.

‘Timely outbreak response requires effective early warning and surveillance systems. This study points out the important role that livestock keepers can play in veterinary surveillance,’ the authors say.

As a result of the experiences of the 2007 outbreak, the authors recommend adopting new forecasting models and surveillance systems ‘that place more emphasis on climatic information [to] increase the lead time before events and enhance the ability of decision-makers to take timely action.’

The researchers also say that outbreaks of Rift Valley fever could be managed better if disease control workers were able to run models that combined economic with epidemiologic factors. With such models, they could better determine the benefits of implementing various disease surveillance and control methods, and the best times to implement each method selected for each circumstance.

This piece is adapted from the article New journal article: An assessment of the regional and national socio-economic impacts of the 2007 Rift Valley fever outbreak in Kenya by Tezira Lore, communications specialist for ILRI’s Markets Theme.

To read the complete report and its recommendations please visit http://www.ajtmh.org/cgi/content/abstract/83/2_Suppl/65/

A related ILRI news article addresses the full effects of the 2006/7 Rift Valley fever outbreak in East Africa, including the national and regional socioeconomic impacts of the outbreak and its effects on human and animal health.

Assessing the full costs of livestock disease: The case of the 2007 outbreak of Rift Valley fever in Kenya

Bullish market

Livestock market in Garissa, in northeastern Kenya. Closure of the cattle market and disruption of cross-border cattle trade with Somalia due to outbreaks of livestock disease can worsen food insecurity among the pastoralists and agropastoralists on both sides of the border. (Photo credit: Tze-Yun Soh)

Rift Valley fever is a mosquito-transmitted zoonotic disease that harms both human health and livestock production. It can also induce large, often overlooked, economic losses among many other stakeholders in the livestock marketing chain.

A new paper published by ILRI scientists Karl Rich and Francis Wanyoike assesses and quantifies the multi-dimensional socio-economic impacts of a 2007 outbreak of Rift Valley fever in Kenya. The study is based on a rapid assessment of livestock value chains in the northeast part of the country and a national macroeconomic analysis. As would be expected, the study results show losses among producers in food security and incomes. But the researchers also found significant losses occurred among other downstream actors in the value chain, including livestock traders, slaughterhouses, casual labourers, and butchers, as well as among those in non-agricultural sectors. To better inform policy and decision making during animal health emergencies, the authors argue that we should widen our focus to include analyses that address the multitude of economic losses resulting from an animal disease.

The authors write:

‘Rift Valley fever has had significant impacts on human and animal health alike in East Africa and the Middle East. Past outbreaks in South Africa (1951), Egypt (1977/78), Kenya (1997), and Saudi Arabia (1998–2000) resulted in the cumulative loss of thousands of human lives. The 2000 outbreak in Saudi Arabia led to the imposition of trade bans of live animals from the Horn of Africa (Ethiopia, Somalia, and Kenya) that had devastating economic impacts: one study estimated that total economic value-added in the Somali region of Ethiopia fell by US$132 million because of these trade bans, a 42% reduction compared with normal years . . . .

‘In 2007, Rift Valley fever returned to East Africa, impacting both Kenya and Tanzania. Specifically hard hit by this latest outbreak were the pastoral communities of the northeastern part of Kenya. In this region, livestock serve an important livelihood function for pastoralists, with livestock trade representing over 90% of pastoral incomes . . . . Moreover, northeastern Kenya has the highest incidence of poverty within Kenya, with poverty rates of approximately 70% in 2004 . . . .

‘An overlooked component in the socio-economic analysis of animal diseases is the multiplicity of stakeholders that are affected. Rift Valley fever does not just affect producers, but also impacts a host of other service providers within the livestock supply chain and other parts of the larger economy. Cumulatively, these downstream impacts can often dwarf the impacts of the disease at the farm level, but public policy tends to concentrate primarily on losses accruing to producers. The failure to capture these diverse impacts may have important implications on the evolution and control of disease that may accentuate its impact.

‘The 2007 Rift Valley fever outbreak in Kenya had wide-ranging impacts on the livestock sector and other segments of the economy that are often overlooked in the analysis of animal disease. These impacts included production impacts, employment losses (particularly for casual labor), and a reduction in operating capital among slaughterhouses and butchers that slowed the recovery of the livestock sector once the disease had abated. On a macroeconomic basis, we estimated that Rift Valley fever induced losses of over Ksh 2.1 billion (US$32 million) on the Kenyan economy, based on its negative impacts on agriculture and other sectors (transport, services, etc.) alike.’

Read more: An Assessment of the Regional and National Socio-Economic Impacts of the 2007 Rift Valley Fever Outbreak in Kenya, by Karl Rich and Francis Wanyoike. Rich is on joint appointment with ILRI and the Norwegian Institute of International Affairs, in Oslo. ILRI researcher Wanyoike is based in Nairobi. Their paper is published in the American Journal of Tropical Medicine and Hygiene, 83(Suppl 2), 2010, pp. 52–57.

Need for delivery networks for East Coast fever vaccine highlighted in audio interview

ITM Vaccine

East Coast fever is a major livestock disease in eastern, central and southern Africa. Transmitted by ticks infected with a protozoan parasite (Theileria  parva), it kills over 1 million animals each year, damaging livelihoods of poor livestock keepers and farmers in 11 countries. Researchers from organizations such as the International Livestock Research Institute (ILRI) are working to find innovative ways to protect African livestock against this and other ‘orphan’ livestock diseases.

One of the successes in the efforts to fight East Coast fever has been the development of a ‘live’ vaccine, which includes the whole parasite, weakened so as not to cause severe disease thatcame after over 30 years of research by organizations including ILRI and the Kenya Agricultural Research Institute. This long-term research was funded by UK Department for International Development and other donors of the Consultative Group on International Agricultural Research. The vaccine is now registered in Kenya, Malawi and Tanzania and its widespread use is being promoted so that it can give protection to the animals on which many poor people in these countries depend.

In the following audio interview, John McDermott, Deputy Director General-Research at ILRI, speaks in Nairobi of the need ‘to develop networks that can distribute and deliver’ the vaccine to those who need it, which should encourage its widespread use. This interview, produced in July 2010 by AFGAX Radio (http://www.agfax.net), also shares the expectations of a veterinarian from Kenya and a farmer from Tanzania of how the vaccine will help livestock keepers.

To listen to the interview, visit: http://www.agfax.net/radio/detail.php?i=353

More information about the East Coast fever live vaccine is available in the following article.

Edinburgh-Wellcome-ILRI project addresses neglected zoonotic diseases in western Kenya

Woman Feeding Cow

‘Neglected diseases are diseases of neglected peoples’—Eric Fèvre

Animals and people live close together throughout the developing world. Chickens, goats, pigs, cows and other farmed animals range freely in and out of rural homesteads as families go about their daily lives. This space-sharing by people and their livestock makes good use of the small plots of land managed by the world’s many smallholder farmers; food that might otherwise go to waste can be fed to the animals, for example, while animal manure feeds the cropland by fertilizing it. Most of the world’s smallholder farmers depend on their animals for milk, meat and eggs to feed their families, with the surplus generating much-needed regular household income.

However, such close proximity to their animals puts many people at risk of ‘zoonotic’ diseases, which are those transmitted between people and animals. Remarkably, more than 60% of all human diseases are infections they can get from animals and more than 70% of today’s emerging diseases, such as bird flu, are zoonotic.

Because human and animal health are particularly intertwined in poor countries where people and livestock live in such close proximity, efforts to improve human health in the developing world need to focus on improving animal as well as human health. This makes it necessary for medical and veterinary experts to collaborate and for livestock farmers and herders to be made aware of the disease risks their animals pose to the health of their households.

A project begun in 2009 and funded by the Wellcome Trust, with other support from the International Livestock Research Institute (ILRI), is studying neglected zoonotic diseases and their epidemiology to raise levels of health in poor rural communities. The project, People, Animals and Their Zoonoses, is based in Kenya’s Busia District, which sits on the country’s western border, with Uganda.

Eric Fèvre, who is working jointly for the International Livestock Research Institute (ILRI) and the University of Edinburgh, is the project’s principal investigator and leader. Fèvre says this study is important.

‘Zoonotic diseases are a great burden on poor communities’, Fèvre says. ‘In a poor household where animals and people are in regular close contact, there is a significant chance of zoonotic diseases spreading. Typically in such areas, animals have access to human waste, there is little preventative health services for livestock and there is poor-quality food and forage for people and animals.’

With insufficient and/or unreliable health infrastructure and with many poor people not readily seeking professional medical attention, these diseases often go underreported or misdiagnosed. Complicating and aggravating this already serious health situation, he says, is that ‘in some cases, other non-zoonotic infections may already be present.’

Furthermore, as reported in the May 2010 issue of Veterinary Record, Fèvre says:

‘While malaria is undoubtedly a very serious health issue, its overdiagnosis hides many other problems. To compound this, people in marginalised communities can easily fall off the policy radar – many may be born, live and die without official record being made of them and, as such, they have a weak, or nonexistent, political voice. Thus, while the diseases are grouped as “neglected zoonotic diseases,” it would be equally correct to identify them as “diseases of neglected populations”.’

The Kenya zoonotic study is a four-year project that brings together ILRI scientists in Kenya with researchers from the School of Biological Sciences at the University of Edinburgh and from the Kenya Medical Research Institute, the latter of whom are already working in much of Kenya’s Western and Nyanza provinces. These epidemiologists, veterinarians, medical health professionals and laboratory technologists will visit over 500 homesteads in Busia to collect data and samples from people and livestock; those people found ill will be treated or referred to specialists.

The project data will be used to quantify the place of zoonoses in the context of other infectious diseases and to refine our understanding of factors that put people and livestock at risk. The study team also aims to come up with diagnostic tests that can be used in the field and to design cheap, easy-to-implement health interventions for both people and livestock. The project is focusing on bovine tuberculosis, cysticercosis, brucellosis, Q-fever, Rift Valley fever and trypanosomiasis (in cattle) /sleeping sickness (in people) and their impacts on both livestock and the people.

The results of this project are expected not only to improve the health aspects of the relationship between people and their livestock in western Kenya but also to provide important background for future research and policymaking on zoonotic issues.

More information can be found at www.zoonotic-diseases.org

The May 2010 issue of the Veterinary Record gives an excellent account of this ambitious human-animal health project: http://veterinaryrecord.bvapublications.com/misc/about.dtl (subscription required).

New project to reduce chicken disease in Ethiopia

Chicken on LUO RU BIN's farm

A new study of genetic resistance to disease in Ethiopia’s indigenous chicken breeds is scheduled to start later this year. In collaboration with the Ethiopian Institute for Agricultural Research, the University of Liverpool, Roslin Institute, the Univerisity of Edinburgh and the University of Nottingham, researchers from the International Livestock Research Institute (ILRI) will seek to identify ‘the causes of infectious diseases that have a major impact on poultry production in Ethiopia.’

Scheduled to start in September 2010, the study will take place in the district of Jarso, in eastern Ethiopia, and in Horro, in the west of the country. The results of this research will be linked to an ongoing poultry breeding program to improve resistance to ‘priority infectious diseases’ and thereby enhance the productivity of the country’s poultry sector.

Poultry play important economic, nutritional and socio-cultural roles in the livelihoods of poor rural households in Ethiopia and many other developing countries, where birds are widely integrated into smallholder production systems and help households cope with hunger and poverty.

Buying and rearing poultry is often a first step out of poverty. Women tend to own and manage chickens, usually native chicken varieties, which provide them with their only independent source of cash income.

Although breeding programs for local chickens have shown that rapid improvement in productivity is possible, researchers have yet to identify and select the optimal breeds for improving, by, for example, providing resistance to common infectious diseases.

Tadelle Dessie, a team leader of ILRI’s biotechnology theme in Ethiopia, and one of the leaders of the chicken project, says ‘enhanced genetic resistance through selective breeding is still an under-exploited low-cost opportunity for disease control in low-input poultry production systems’. He says the study will investigate genetic variability in the resistance of local chicken ecotypes to major infectious diseases hurting village poultry production in Ethiopia. Results of the research will inform strategies for improving both disease resistance and productivity.

Indigenous chicken varieties are well adapted to local environments, but local birds tend to grow slowly and produce fewer and smaller eggs than commercial varieties. Infectious diseases, however, can wipe out flocks of exotic, higher-producing, poultry.

Knowledge from this study should enable Ethiopian policymakers and animal health professionals to design more precise disease-control plans. The study itself should help improve Ethiopia’s scientific capacity in this field by training local scientists and enhancing laboratory facilities for poultry testing.

Staff are now being recruited for the project, which will be launched in September.

New participatory initiative to involve local communities in disease control

A new approach to disease surveillance and control aims to unite human and animal medical approaches to better control disease spread and so improve public health.

In this 10-minute film from the International Livestock Research Institute (ILRI), representatives of seven institutional members of a Participatory Epidemiology Network for Animal and Public Health (PENAPH), which includes researchers from ILRI, discuss ways of involving communities and health workers in the process of empowering local people.

The network uses participatory approaches to come up with effective ways of dealing with community challenges and encourages teamwork among farmers, veterinarians, nurses, doctors, governments and other specialists, especially in setting up effective disease surveillance systems.

Research shows bird flu still a threat to poultry production in Kenya

Chicken

Risk assessment shows Avian Influenza still a threat to poultry production in Kenya

The risk of avian flu on poultry production continues to be a threat to the livelihoods of many poor and livestock-reliant farmers in developing countries such as Kenya, researchers say.

Scientists from the International Livestock Research Institute (ILRI) and the International Food Policy Research Institute (IFPRI) have found that poultry farmers in Kenya are ‘highly susceptible to the introduction and spread of the highly pathogenic avian influenza (HPAI)’ because of the country’s location along key wild birds’ migratory routes and the absence of strong mechanisms to deal with a possible outbreak of the disease.

Like in many developing countries, poultry production is an important livelihood activity in Kenya. Most poultry is kept by small-scale farmers in non-commercial settings, who depend on income from the sale of eggs, animals and meat to sustain their livelihoods.

Results from a 2009 impact assessment conducted by ILRI, IFPRI and the Royal Veterinary College in London with support from the Department for International Development (DFID) on the ‘Role of Poultry in Kenyan Livelihoods and the Ex Ante Impact Assessment of HPAI on Livelihood outcomes’ show that farmers in the key poultry producing regions of the country are not adequately prepared to deal with an outbreak of avian influenza.

Though the country has not had an outbreak of avian flu, there were two scares in 2005 and 2005.  The scares led to a slowdown in the industry as farmers, in fear of making losses, reduced flock sizes by up to 40 per cent. The two scares also led to a depressed market for poultry and poultry products and lowered the prices which negatively impacted farmers. The assessment showed that farmers in Kenya are still at risk especially because the country’s human and animal health services are not adequate. Coupled with the fact that most of the poultry farming in the country is a ‘backyard poultry system’ preventing and controlling disease outbreaks would be significantly difficult.

Among others, the results of the assessment also showed, like other studies had confirmed, that poultry production is largely done by women and children to support livelihoods and that most of the poultry in Kenya is produced in the country’s western and eastern regions. Farmers in these places are most at risk of loses in the event of a HPAI outbreak. Kenyan farmers keep an average flock size of 18 birds across the country but there are significant variations across regions mostly determined by ease of access to markets. Nairobi province, for example, has large producers (though fewer in number compared to other regions) with an average of 158 birds per flock because of access to ready market for their animals.

The assessment found that ‘households with “larger” small-scale flocks as well as those located in high risk areas (Western, Nyanza and parts of Eastern provinces) are vulnerable to HPAI.  In the event of an outbreak, the disease would cause ‘significant reduction in livestock income and wealth (asset value) and total annual household income would be reduced.’

The results of this assessment were first published as ‘The role of poultry in Kenyan livelihoods and the ex ante impact assessment of HPAI on Livelihood outcomes’ by the International Food Policy Research Institute (IFPRI).  A full report of the assessment can be found in the following link http://www.ifpri.org/sites/default/files/publications/hpairb11.pdf

For more information visit www.hpai-research.net


New film shows how herders and farmers were affected by the recent East African drought

A new film by the International Livestock Research Institute (ILRI) shares the experiences of Kenyan herders and farmers who were affected by the 2008-2009 East African drought. The film documents the stories of Maasai herders in Kitengela who lost nearly half of their livestock to the drought and disease and how this led some to seek alternative livelihood sources to cope. The film also shares the story  of a farmer in Kitui district whose  experience of the drought, which is shared by other farmers and livestock keepers  in the drought-prone district, shows how the poor continually face threats to their livelihoods as a result of changes in climate. 


Serengeti surely SHALL die if a proposed highway bisects its northern wilderness—and if its human neighbours remain poverty-stricken

Zebra and wildebeest in the Masai Mara Game Reserve

Zebra and wildebeest in Kenya’s Masai Mara Game Reserve (photo credit: ILRI/Elsworth).

The New York Times and other media are reporting this week that one of the greatest wildlife spectacles on earth—the annual migration of nearly 2 million wildebeest and zebra from the drying savannas of the Serengeti, in Tanzania, to the wetter, greener, pastures of Kenya’s adjacent Masai Mara, and back again—is threatened by a proposed new national transit road for northern Tanzania that would cut right across the migration route of these vast herds of ungulates, likely leading to the collapse of this migration and possibly the crash of this ecosystem as a whole.

Kenya’s Masai Mara is the only year-round water source in the Greater Serengeti, and thus serves as critical dry-season grazing grounds for these vast herds of big mammals.

Just one of the problems such a road would bring is a greater disease burden to people, livestock and wildlife alike. In her extensive and useful research notes to her recent article, ‘Road Kill in the Serengeti’, in the New York Times, Olivia Judson refers readers to a scientific paper written by Eric Fevre, of the Zoonotic and Emerging Diseases research group at the University of Edinburgh, now based at the International Livestock Research Institute (ILRI) in Kenya while working on a 3-year human-animal disease research project in Busia District. Fevre describes the spread of animal diseases through animal transportation in his article, ‘Animal movements and the spread of infectious diseases’ (Trends in Microbiology, 2006).

Perhaps just in time, just this month former ILRI ecologist Robin Reid, now director of the Center for Collaborative Conservation at Colorado State University, in Fort Collins, USA, began a project in Kenya that is putting radio collars on wildebeest to learn more precisely what routes the animals take in their migration. This project’s members are involving Maasai schoolchildren, who are naming the wildebeest, which they will then be able to follow. The wildebeest collars send regular tracking signals to Safaricom, which are then sent to Colorado, where the routes are posted on a web map that the schoolchildren can follow.

This year’s annual wildebeest migration has already begun. Herds are reported to have crossed the common border of Kenya/Tanzania from Northern Serengeti into Masai Mara, about 4 days ago. ‘What has been unusual about this year’s migration,’ says Paul Kirui, in the Masai Mara, ‘is that the main migration from the south arrived in the Mara early ahead of the Loita herds—the Kenyan resident herds of wildebeest—which usually migrate into the Mara from the east of the park. Normally when we start seeing them move into the park, it is a sign that the main migration from the south is on the way.’

The first population of wildebeest that Reid’s team darted and then tagged with radio collars in the Mara is the Loita group that remains resident in Kenya all year round. Or so the researchers think. The radio collars, now fixed on the first 15 wildebeest, have already started to report back and will be letting scientists, and those schoolchildren, know just where they go, and when.

Reid’s return gave ILRI cause to revisit two remarkable films about her ILRI research in the Mara. Counting in a Disappearing Land (ILRI, 11 minutes, 2007) describes Reid’s project with a Maasai community that has traditionally herded their livestock in Kenya’s wildlife-rich Masai Mara region. This ILRI project was looking to find ways of balancing the needs of people, lands and wildlife. In The Great Migration (CBS ’60 Minutes’, 15 minutes, October 2009), Scott Pelley interviews Reid about the threats to this natural spectacle and the part local Masai are playing to address these threats.

Collaborative conservation may indeed be the answer to saving the Serengeti ecosystem. Protecting majestic wild places and the wildlife they support, places that instill wonder in us, matters, of course, but so does protecting millions of people from severe poverty, chronic hunger and the afflictions that come in their wake: disease and untimely death.

With a large percentage of its land area under protection, Tanzania is a world leader in biodiversity conservation. It is also very, very poor. How this tug at resources—whether the Serengeti Plains will be used for wildlife tourism or other kinds of commerce—will play out may depend on how much the local communities living in poverty near the wildlife benefit from saving this, the last of the great migrations of big mammals on Earth.

More . . . (New York Times, 15 June 2010)

An alternative, southern road in Tanzania is discussed on a webpage of the Frankfurt Zoological Society.

See Paul Kirui’s blog on 17 June 2010 the migration on Masai Mara Updates.

Livestock goods and bads: Filmed highlights of ILRI’s 2010 Annual Program Meeting

At the 2010 Annual Program Meeting (APM) of the International Livestock Research Institute (ILRI), held in April in Addis Ababa, Ethiopia, several hundred participants debated and discussed the challenges facing the global livestock industry. ILRI and its partners are investigating ways to promote smallholder participation in livestock markets, more sustainable ways for livestock keepers to use natural resources, and ways to improve livestock pathways out of poverty.

Some of the presentations made during the meeting on the theme of 'Livestock: the Good, the Bad and the Gaps' were captured on film. We share three of those below.

The first film is a presentation by ILRI agricultural systems analyst Mario Herrero on the important place of livestock for smallholder farmers in developing economies. Herrero highlights the many benefits livestock bring to the rural poor and argues that the rapidly expanding sector will need to be better managed and to reduce the environmental risks it poses if it is to continue to be productive. Herrero argues for an integrated assessment of the effects of the global livestock industry on various agro-ecosystems important to the poor.

In the second film, ILRI veterinary and food safety researcher Delia Grace discusses the human health risks associated with livestock keeping. Grace notes that zoonotic diseases (those transmitted between animals and people) and emerging infectious diseases (such as bird flu) are two of the well-known risks associated with livestock. But she says that animals provide a means of regulating diseases because they can serve as sentinels that lets communities and public health officials know of disease outbreaks before the diseases can affect humans. She makes the case for more research to address the many common misconceptions that exist about livestock and human health.

In the third film, Narayan Hedge, of India's BAIF Development Research Foundation, highlights the important role livestock play in providing a livelihood for nearly 700 million people in India. He makes an appeal for better livestock technologies, better infrastructure, and more efficient management of the industry so that more smallholder farmers can use livestock to escape poverty.

Livestock vaccine offers lifeline to many

ITM Vaccine

A vaccine is being made available to save the lives of a million cattle in sub-Saharan Africa against a lethal disease and to help safeguard the livelihoods of people who rely on their cattle for their survival.

East Coast fever is a tick-transmitted disease that kills one cow every 30 seconds. It puts the lives of more than 25 million cattle at risk in the 11 countries of sub-Saharan Africa where the disease is now endemic. The disease endangers a further 10 million animals in regions such as southern Sudan, where it has been spreading at a rate of more than 30 kilometres a year. While decimating herds of indigenous cattle, East Coast fever is an even greater threat to improved exotic cattle breeds and is therefore limiting the development of livestock enterprises, particularly dairy, which often depend on higher milk-yielding crossbred cattle. The vaccine could save the affected countries at least a quarter of a million US dollars a year.

Registration of the East Coast fever vaccine is central to its safety and efficacy and to ensuring its sustainable supply through its commercialization. The East Coast fever vaccine has been registered in Tanzania for the first time, a major milestone that will be recognized at a launch event in Arusha, northern Tanzania, on May 20. Recognizing the importance of this development for the millions whose cattle are at risk from the disease, governments, regulators, livestock producers, scientists, veterinarians, intellectual property experts, vaccine distributors and delivery agents as well as livestock keepers – all links in a chain involved in getting the vaccine from laboratory bench into the animal – will be represented.

An experimental vaccine against East Coast fever was first developed more than 30 years ago at the Kenyan Agricultural Research Institute (KARI). Major funding from the UK Government’s Department for International Development (DFID) and others enabled work to produce the vaccine on a larger scale. When stocks from 1990s ran low, the Africa Union/Interafrican Bureau for Animal Resources and chief veterinary officers in the affected countries asked the International Livestock Research Institute (ILRI) to produce more and ILRI subsequently produced a million doses of the vaccine to fill this gap. But the full potential for livestock keepers to benefit from the vaccine will only be achieved through longer term solutions for the sustainable production, distribution and delivery of the vaccine.

With $28US million provided by the Bill & Melinda Gates Foundation and DFID, a not-for-profit organization called GALVmed (Global Alliance for Livestock Veterinary Medicines) is fostering innovative commercial means for the registration, commercial distribution and delivery of this new batch of the vaccine. A focus on sustainability underpins GALVmed’s approach and the Global Alliance is bringing public and private partners together to ensure that the vaccine is available to those who need it most.

Previous control of East Coast fever relied on use of acaracide dips and sprays, but these have several drawbacks. Ticks can develop resistance to acaracides and regular acaricide use can generate health, safety and environmental concerns. Furthermore, dipping facilities are often not operational in remote areas.

This effective East Coast fever vaccine uses an ‘infection-and-treatment method’, so-called because the animals are infected with whole parasites while being treated with antibiotics to stop development of disease. Animals need to be immunized only once in their lives, and calves, which are particularly susceptible to the disease, can be immunized as early as 1 month of age.

Over the past several years, the field logistics involved in mass vaccinations of cattle with the infection-and-treatment method have been greatly improved, due largely to the work of a private company, VetAgro Tanzania Ltd, which has been working with Maasai cattle herders in northern Tanzania. VetAgro has vaccinated more than 500,000 Tanzanian animals against East Coast fever since 1998, with more than 95% of these vaccinations carried out in remote pastoral areas. This vaccination campaign has reduced calf mortality in herds by 95%. In the smallholder dairy sector, vaccination reduced the incidence of East Coast fever by 98%. In addition, most smallholder dairy farmers reduced their acaracide use by at least 75%, which reduced both their financial and environmental costs.

Notes for Editors

What is East Coast fever?
East Coast fever is caused by Theleria parva (an intracellular protozoan parasite), which is transmitted by the brown ear tick Rhipicephalus appendiculatus. The parasites the tick carries make cattle sick, inducing high fever and lympho-proliferative syndrome, usually killing the animals within three weeks of their infection.

East Coast fever was introduced to southern Africa at the beginning of the twentieth century with cattle imported from eastern Africa, where the disease had been endemic for centuries. This introduction caused dramatic cattle losses. The disease since then has persisted in 11 countries in eastern, central and southern Africa – Burundi, Democratic Republic of Congo, Kenya, Malawi, Mozambique, Rwanda, Sudan, Tanzania, Uganda, Zambia and Zimbabwe. The disease devastates the livelihoods of small-scale mixed crop-and-livestock farmers, particularly smallholder and emerging dairy producers, as well as pastoral livestock herders, such as the Maasai in East Africa.

The infection-and-treatment immunization method against East Coast fever was developed by research conducted over three decades by the East African Community and the Kenya Agricultural Research Institute (KARI) at Muguga, Kenya (www.kari.org). Researchers at the International Livestock Research Institute (ILRI), in Nairobi, Kenya (www.ilri.org), helped to refine the live vaccine. This long-term research was funded by the UK Department for International Development (DFID) (www.dfid.gov.uk) and other donors of the Consultative Group on International Agricultural Research (CGIAR) (www.cgiar.org).

The first bulk batch of the vaccine, produced by ILRI 15 years ago, has protected one million animals against East coast fever, with the survival of these animals raising the standards of living for many livestock keepers and their families. Field trials of the new vaccine batch, also produced at ILRI, were completed in accordance with international standards to ensure that it is safe and effective.

How is the vaccine stored and administered?
Straws of the East Coast fever vaccine are stored in liquid nitrogen until needed, with the final preparation made either in an office or in the field. The vaccine must be used within six hours of its reconstitution, with any doses not used discarded. Vaccination is always carried out by trained veterinary personnel working in collaboration with livestock keepers. Only healthy animals are presented for vaccination; a dosage of 30% oxytetracycline antibiotic is injected into an animal’s muscle while the vaccine is injected near the animal’s ear. Every animal vaccinated is given an eartag, the presence of which subsequently increases the market value the animal. Young calves are given a worm treatment to avoid worms interfering with the immunization process.

Note
Case studies illustrating the impact of the infection-and-treatment vaccine on people’s lives are available on the GALVmed website at: www.galvmed.org/path-to-progress
For more information about the GALVmed launch of the live vaccine, on 20 May 2010, in Arusha, Tanzania, go to www.galvmed.org/

US$4.4 million awarded for research to build a climate model able to predict outbreaks of infectious disease in Africa

Cow suffering from trypanosomosis

Scientists at the University of Liverpool, in the UK, and the International Livestock Research Institute (ILRI), in Kenya, are working with 11 other African and European partners on a US$4.4-million (UK£3 million-) project to develop climate-based models that will help predict the outbreak and spread of infectious diseases in Africa.

The researchers are working to integrate data from climate modelling and disease-forecasting systems so that the model can predict, six months in advance, the likelihood of an epidemic striking. The research, funded by the European Commission Seventh Framework, is being conducted in Ghana, Malawi and Senegal. It aims to give decision-makers the time needed to deploy intervention methods to stop large-scale spread of diseases such as Rift Valley fever and malaria, both of which are transmitted by mosquitoes.

It is thought that climate change will change global disease distributions, and although scientists know a lot about the climate triggers for some diseases, they don’t know much about how far into the future these disease events can be predicted. This new project brings together experts to investigate the links between climate and vector-borne diseases, including ‘zoonotic’ diseases, which are transmissible between animals and humans.

ILRI veterinary researcher Delia Grace says that diseases shared by people and animals are under-investigated although they are critically important for public health. ‘Fully 60% of all human diseases, and 75% of emerging diseases such as bird flu, are transmitted between animals and people,’ she said.

ILRI geneticist Steve Kemp said that the project is making use of ILRI’s advanced genomics capacities to analyse pathogens from the field and to integrate the data collected on both pathogen distribution and climatic factors. ‘From ILRI’s point of view,’ Kemp said, ‘this project is particularly exciting because it brings strong climate and weather expertise that complements systems recently built by ILRI and its partners to detect outbreaks of Rift Valley fever and to determine its spread.’

The new project also complements ILRI’s ongoing work to better control trypansomosis in West African livestock, a disease transmitted by tsetse flies. Trypanosomosis, which is related to sleeping sickness in humans, causes devastating losses of animals—along with animal milk, meat, manure, traction and other benefits—across a swath Africa as big as continental USA. Members of the new modeling project will conduct research in some of the same locations as ILRI’s West African trypanosomosis project, Kemp explained, and work with some of the same partner organizations, which should generate synergies that benefit both projects.

The risk of epidemics in tropical countries increases shortly after a season of good rainfall—when heat and humidity allow insects, such as mosquitoes, to thrive and spread diseases. Matthew Baylis, from Liverpool’s School of Veterinary Science, explained how this works with Rift Valley fever: ‘Rift Valley fever can spread amongst the human and animal population during periods of heavy rain, when floodwater mosquitoes flourish and lay their eggs. If this rainfall occurs unexpectedly during the dry season, when cattle are kept in the villages rather than out on the land, the mosquitoes can infect the animals at the drinking ponds. Humans can then contract the disease by eating infected animals. Working with partners in Africa, we can bring this information together to build a much more accurate picture of when to expect epidemics.

Andy Morse, from Liverpool’s School of Environmental Sciences, said the project combines historical and contemporary climate data with disease incidence information, including that for vector-borne diseases, as well as integrating monthly and seasonal forecasts. The resulting single, seamless, forecast system, Morse said, should allow projections of disease risk to be made beyond the conventional predictable time limit. ‘All this information will be fed into a decision-support system to be developed with decision-makers on national health issues’ in the three target countries.

The project was launched at a conference at the University of Liverpool on 19 April 2010.

For more information, contact ILRI scientist Steve Kemp. ILRI email contacts are formatted as follows: f.surname@cgiar.org: replace ‘f’ with the staff member’s first initial and replace ‘surname’ with the staff member’s surname.

The 13 research partners:
Abdus Salam International Centre for Theoretical Physics (Italy), Centre de Suivi Ecologique (Senegal), Consejo Superior de Investigaciones Cientificas (Spain), European Centre for Medium-Range Weather Forecasts (UK), Fundació Privada Institut Català de Ciències del Clima (Spain), Institut Pasteur de Dakar (Senegal), International Livestock Research Institute (Kenya), Kwame Nkrumah University of Science and Technology (Ghana), Universitaet zu Koeln (Germany), University Cheikh Anta Diop de Dakar (Senegal), University of Liverpool (UK), University of Malawi (Polytechnic & College of Medicine), University of Pretoria (South Africa)