Biologists in Nairobi to take part in two new animal health projects announced this week by the US National Science and Gates foundations

East Coast Fever

The National Science Foundation (NSF) of the United States announced on 12 May 2010 that the Foundation, in partnership with the Bill & Melinda Gates Foundation, is awarding 15 grants worth US$20 million in support of basic research for generating sustainable solutions to big agricultural problems in developing countries.

These are the first grants in a new five-year Basic Research to Enable Agricultural Development (BREAD) program, which is jointly funded by NSF and the Gates Foundation.

The awards in this first year of funding will allow leading scientists worldwide to work together in basic research testing novel and creative approaches to reducing longstanding problems faced by smallholder farmers in poor countries.

Scientists from the Nairobi, Kenya, animal health laboratories of the International Livestock Research Institute (ILRI) will participate in 2 of the 15 projects selected among the many submitted to BREAD for funding.

Biologists at New York and Michigan State universities and Regeneron Pharmaceuticals (USA), the Roslin Institute and the University of Edinburgh (UK) and ILRI (Kenya) will test a novel approach to developing cattle that are resistant to trypanosomosis, a deadly cattle disease that is closely related to sleeping sickness in humans and that holds back animal agriculture across a swath of Africa as large as continental USA.

In another project, scientists from the University of Vermont and Plum Island Animal Disease Center (USA) will work with the University of Copenhagen (Denmark) and ILRI on use of advanced genetics to develop vaccines for East Coast fever and other cattle diseases that threaten the livelihoods of millions of smallholder farmers in sub-Saharan Africa.

Go here for a 12 May 2010 news release from the US National Science Foundation: http://www.nsf.gov/news/news_summ.jsp?cntn_id=116932

A complete list of 2010 BREAD awards can be accessed at: http://www.nsf.gov/bio/pubs/awards/bread10.htm

Swedish International Development Agency grants US$10.67 million to improve African bioscience


Virus greenhouse at the ILRI Addis

Bio-resources Innovations Network for Eastern Africa Development (Bio-Innovate) announce USD10.67 million grant from the Swedish International Development Agency (Sida).

The New Partnership for Africa’s Development (NEPAD) and the International Livestock Research Institute (ILRI) today announced a SEK80 million (USD10.67 million) grant from the Swedish International Development Agency (Sida) to support the set up of a multidisciplinary competitive funding mechanism for  biosciences and product-oriented innovation activities in eastern Africa (Burundi, Ethiopia, Kenya, Rwanda, Tanzania and Uganda).

The Bio-Innovate Program will focus on delivering new products through bioscience innovation systems involving a broad sector of actors, including scientists, the private sector, NGOs and other practitioners. The program will use modern bioscience to improve crop productivity and resilience to climate change in small-scale farming systems, and improve the efficiency of the agro-processing industry to add value to local bio-resources in a sustainable manner. Bio-Innovate will be user-, market- and development-oriented in order to make a difference on the ground in poverty alleviation and sustainable economic growth.

Ibrahim Assane Mayaki, Chief Executive Officer of the NEPAD Planning and Coordinating Agency, says: “African governments have recognized the importance of regional collaboration in science and technology to enable the continent to adapt the rapid advances and promises of modern biosciences. In 2005, under the auspices of the Africa Union (AU) and NEPAD, African countries designed and adopted Africa´s Science and Technology Consolidated Plan of Action (CPA). The plan puts emphasis on improving the quality of African science, technology and innovation through regional networking and developing more appropriate policies. Biotechnology and biosciences are prioritized areas in the plan, as has been demonstrated by the work of a high-level AU/NEPAD African Panel on Biotechnology, whose findings are in the publication Freedom to Innovate—Biotechnology in Africa´s Development.”

An Africa-based and Africa-led initiative, Bio-Innovate will draw upon existing expertise and resources from Africa, while forming connections with both African and global institutions to add value to Africa’s natural resources and develop sound policies for commercializing products from biosciences research.

Bio-Innovate builds on the achievements of the BIO-EARN program funded by Sida from 1999 to 2009 and has been developed by a team appointed by BIO-EARN governing board. “The program will benefit a lot from the facilities available at the Biosciences eastern and central Africa (BecA) Hub”, says Hassan Mshinda, Chair of the BIO-EARN Governing Board.

“We recognize the importance of the Bio-Innovate initiative to complement and strengthen the biosciences research in eastern and central Africa,” says Carlos Seré, Director General of ILRI. “We appreciate the support from Sida and are convinced that this innovative program will strengthen Africa’s capacity in using biotechnology for economic development.”

“Sida sees the Bio-Innovate Program as an important platform for pooling eastern African expertise through a regional bioscience innovation network, enabling cross-sectoral and interdisciplinary R&D and policy and sustainability analysis. The Bio-Innovate Program will be integrated into ongoing regional programs and structures and promote bioscience innovation in support of sustainable development in the region”, says Gity Behravan, Senior Research Advisor at Sida.

Notes:
New Partnership for Africa’s Development (NEPAD): The New Partnership for Africa’s Development (NEPAD) is a socioeconomic development program of the African Union (AU).  The objective of NEPAD is to stimulate Africa’s development by filling gaps in agriculture, health, education, infrastructure, science and technology. NEPAD explicitly recognizes that life sciences and biotechnology offer enormous potential for improving Africa’s development. Through NEPAD, African countries have committed themselves to establish networks of centres of excellence in biosciences. Four sub-regional networks have been established: the Southern African Network for Biosciences (SANBio), the Biosciences Eastern and Central Africa Network (BecANet), the West Africa Biosciences Network (WABNet) and the North Africa Biosciences Network (NABNet). A recent AU decision to integrate NEPAD into structures and processes of the AU gives the NEPAD Planning and Coordinating Agency (NPCA) the mandate to facilitate, coordinate and implement the NEPAD agenda.

International Livestock Research Institute (ILRI): The Africa-based International Livestock Research Institute (ILRI) works at the crossroads of livestock and poverty, bringing high-quality science and capacity building to bear on poverty reduction and sustainable development. ILRI is one of 15 centres supported by the Consultative Group on International Agricultural Research (CGIAR). It has its headquarters in Kenya and a principal campus in Ethiopia. It also has teams working out of offices in Nigeria, Mali, Mozambique, India, Thailand, Indonesia, Laos, Vietnam and China. ILRI hosts the Biosciences eastern and central Africa (BecA) Hub at the invitation of the African Union/New Partnership for Africa’s Development (AU/NEPAD), as part of the AU/NEPAD’s Africa Biosciences Initiative. The BecA Hub is part of a shared research platform on the ILRI campus in Nairobi. The BecA Hub has been established over the past two years, with strong support from the Government of Canada, through the Canadian International Development Agency (CIDA), and ILRI. For more information, please visit our website: www.ilri.org

Scottish and Kenyan research groups collaborate to improve control of deadly cattle disease in Africa

ITM Vaccine New project launched to investigate how immunity develops in cattle to fatal diseases caused by different strains of tick-borne parasites

More than 1 in 5 people in sub-Saharan Africa live below the poverty line. Many of these people live in rural communities heavily dependent on livestock for their livelihoods. One of the most important diseases of cattle in this region is East Coast fever, a lethal infection of cattle caused by the tick-borne parasite Theileria parva. This disease afflicts cattle populations in 16 countries across eastern, central and southern Africa and is the most economically important cattle disease in 11 of these countries. Losses due to East Coast fever exceed US$300 million annually. Imported high-yielding breeds of cattle, which are increasingly being used to satisfy increasing demands for milk in this region, are particularly susceptible to this disease.
Although East Coast fever can be controlled by treating infected animals with anti-parasitic drugs and by regularly spraying or dipping animals with anti-tick chemicals, these methods are difficult to apply and costly for poor livestock keepers. Vaccination offers a more sustainable means of controlling the disease.
Cattle can be immunized against the disease by infecting them with live parasites while simultaneously treating the animals with long-acting antibiotics. Because several strains of the parasite exist in the field, this vaccination comprises a mixture of strains. A vaccine cocktail mixing three parasite strains is being used successfully in some endemic countries, but applying this so-called ‘live vaccine’ remains hindered by difficulties in maintaining the quality of the vaccine material and in finding ways to distribute the vaccine, which needs to be kept cold, cost-effectively to widely dispersed cattle herders. In addition, it remains uncertain whether the current mix of parasite strains in the vaccine is optimal for obtaining robust immunity.
Recent studies of East Coast fever have shown that the so-called ‘protective’ proteins of the causative parasite—that is, the antigenic molecules that are recognized by the T lymphocytes of the bovine immune system and thus help animals fight development of disease—vary among the different strains of the parasite that exist in the field. This project will build on these advances to investigate the nature and extent of variability in these antigens between parasite strains. This knowledge will help scientists understand the factors that determine which parasite strains induce protective immune responses in animals that have been vaccinated.
Results of the project should provide methods for maintaining high quality of the current live vaccine and identifying parasite strains that could be incorporated into an improved second-generation live vaccine. The information should also help researchers design new, genetically engineered, vaccines, which comprise not whole parasites but rather antigenic molecules of the parasite—and thus are safer, cheaper and easier to distribute than the current live vaccine.
 
‘This is an important project for us,’ said Philip Toye, a vaccine developer from International livestock Research Institute (ILRI). ‘The information we expect to generate will greatly increase our understanding of the current live vaccine that is being used to protect animals against East Coast fever. We can use this information to get this vaccine into wider use in the region.’
 
This project is being conducted jointly by scientific groups at the universities of Edinburgh and Glasgow, in Scotland, and at ILRI, in Nairobi. The project is part of a new initiative called Combating Infectious Diseases of Livestock in Developing Countries funded by the UK’s Biotechnology and Biological Services Research Council, the UK Department for International Development and the Scottish Government. ILRI’s research in this area is also supported by members of the Consultative Group on International Agricultural Research.

African meat for global tables

Mozambique, Maputo

As new channels for African exports become increasingly available, economists and policy makers are focusing more attention on how best to match producers to buyers in Europe and elsewhere, including Africa itself. A recent paper explores the potential and pitfalls of exporting African livestock products.

‘What can Africa contribute to global meat demand?’ recently appeared in Outlook on Agriculture (Vol 38 No 3, pp. 223-233, September 2009). It is authored by Karl M Rich, who works with both the International Livestock Research Institute (ILRI) and the American University in Cairo, and will move to the Norwegian Institute of International Affairs (NUPI) in Oslo, Norway, in February 2010.

Observing that global demand and prices for meat are currently at unprecedented highs, Rich cites International Food Policy Research Institute (IFPRI) data that project that annual per capita meat demand in Africa will double to 22 kg by 2050. This increase will necessitate corresponding rises in demand for cereals as well as livestock. Estimates from the Food and Agriculture Organization of the United Nations (FAO) suggest similar increases in demand throughout the developing world.

These increases bring new opportunities for alternative sources of supply. At first glance, it would seem that Africa would have a distinct advantage in meeting the increasing demand within the continent. However, Africa’s ability to compete with Europe, Asia and the Americas has historically been constrained by low productivity, prevalence of animal diseases and the difficulty of meeting high global standards for health and safety. These constraints must be addressed before Africa can become a major player, and Rich’s paper examines the possibilities of bringing this happy situation about.

Rich begins with an overview of Africa’s role in the global meat trade, both imports and exports. His efforts in this regard are nothing less than heroic. The data from each of Africa’s fifty-odd countries are accumulated in enormously different ways, and the most recent data for some countries are several years old. Nonetheless, the figures are important, and to date no other author has made comparable efforts to get a handle on the situation. Rich does not express a great deal of optimism for the short or medium term. He estimates, for example, that at present Africa provides only about 1% of global meat exports for beef, pork and chicken.

A comparison of regional export shares is even more daunting. Table 1, which presents FAO data, indicates that the overwhelming majority of products come from southern Africa, notably South Africa, Botswana and Namibia, while goat and pig products are sourced predominantly from East Africa. Sheep products come mainly from North Africa (mainly Sudan). Meat exports from the rest of Africa, especially Central and Western Africa, are miniscule. Eight other tables and five figures in the paper provide detailed information of the variety and amount of meat imports and exports among African countries. In the case of exports, information is provided concerning the countries importing African meat products.

Among significant competitor nations are the emerging giant economies of the developing world, especially Brazil and India. These two countries account for a huge slice of the African market, constituting the main source of beef imports—both frozen and fresh—to seven of the largest African customer countries.

Rich points out that one important advantage that India, Brazil and other Latin American countries (Argentina, Paraguay, Uruguay) have over Africa is scale. According to the most recent data from FAO (2006), the total stock of cattle in Africa is about 232 million head. By contrast, Brazil alone has over 207 million head, while India has 180 million as well as nearly 100 million head of buffalo. The African countries with the largest stocks are Ethiopia and Sudan, but neither comes close to those of Brazil or India, and both have fewer head than Argentina.

While African exporters will not be able to compete with Brazil or India in the short to medium term, inroads to foreign markets have been made by some southern African countries to the European Union (EU). This trade is driven by preferential access to the EU brought about through the Cotonou Agreement which provides tariff reductions for African and other developing economies. But even with such international agreements in place, African countries have been unable to fill the quotas provided, largely because of the rigourous standards for compliance with EU sanitary regulations. To retain access to European markets, for example, Botswana and Namibia have had to set aside areas free from foot and mouth disease (FMD)—an expensive arrangement that precludes raising cattle by traditional African husbandry methods. Furthermore, without these preferences it is unlikely that southern African producers could compete with the likes of Brazil.

Rich concludes his paper with a section entitled The road ahead: where and how can Africa contribute to global meat demand?  Before discussing the most likely methods for improving Africa’s competiveness with other meat-exporting nations, however, he cautions that ultimately, significant improvements in productivity, breeding, infrastructure and marketing will be required over and above the options he identifies.

The author identifies five options.

  1. Commodity-based trade. Diseases such as FMD persist in developing countries, limiting market access from developing markets to lucrative ones in the developed world. Commodity-based approaches focus on attributes of a product such as quality and safety rather than the disease status of its place of origin. It is argued that deboned and properly matured beef, for example, poses virtually no threat of transmission of diseases such as FMD. While commodity-based approaches could pave the way for increased trade from Africa, a number of gaps remain. In particular, will African countries be the major winners? If not, what further constrains Africa’s market access? A recent report by Karl Rich and Brian Perry to the UK Department for International Development explores this option further.
  2. Certification programs and disease-free compartments. Africa can raise its profile in global markets by demonstrating compliance with SPS standards. A compartment is a network of micro-level disease-free areas linked to each other and maintained through high levels of monitoring. A good example of this option is discussed in the paper mentioned in the box item above, a USAID-funded program currently under way in Ethiopia.
  3. Branded niche products. This option focuses on the strengths that Africa can offer global buyers by building and encouraging trade associations and marketing organizations. The author cites several examples—Farmer’s Choice of Kenya, Farm Assured Namibian Meat, the Kalahari Kid Corporation, the Namibian Meat Board, the South African Meat Industry Company and the National Emergent Red Meat Producers Organisation. These associations promote local products, engage in branding and quality assurance and build the capacity of emerging farmers.
  4. Regional integration and trade. Rich points out that despite the existence of regional cooperation agreements, barriers between member countries continue to hamper trade. Reducing these barriers will be crucial if Africa is to develop and harness the scale necessary to compete in international markets and lower costs. Investments in marketing and promotion among regional partners will be required for countries to enter and sustain effective trading in high-value markets.
  5. Domestic markets. Both formal and informal channels for meat products have been developed within each African country over the past several years. Because domestic prices in fact frequently exceed international prices, finding ways to deliver local products at competitive prices is an option with good potential, though these products will increasingly compete with low-cost imports. Competing effectively on price will be crucial for African producers to be successful in such channels.

The abstract of the paper can be accessed online.
For additional information, contact Karl Rich at k.rich@cgiar.org.

How livestock diseases and their control impact poor people

This themed issue of Philosophical Transactions B, provides an overview of some of the issues relating to infectious diseases of livestock.

At the beginning of the 21st Century, the world is faced with a changing landscape of infectious diseases that affect man and animals. Most livestock pathogens that emerge and re-emerge are capable of being transmitted to man and an increasing number are distributed by insect vectors. Globalisation defines the world of pathogens and the recent emergence and spread of swine flu provides a topical illustration of the threats presented by zoonotic viruses that can be moved rapidly around the world by the occupants of our ‘global village’. Whilst distribution via air transport represents an extreme, the transmission of pathogens by insect vectors is increasingly linked to the effects climate change and new vector-borne diseases, such as bluetongue, are now occurring for the first time in Northern Europe.

However, old and persistent diseases remain in most parts of the world must be dealt with. Some, such as foot and mouth disease, present significant ongoing restrictions to national and international trade and may have devastating financial impacts when they are introduced in to FMD-free areas.

The future looks to be much, much more of the same. The scientific community will need to be fleet-of-foot to deal with some unexpected disease threats and the world of zoonotic infections will drive the animal and human disease research specialists to work closer together.

A ‘One Medicine’ way of working will be increasingly necessary to optimise control of disease at the livestock-man interface and all major livestock diseases will need to be considered for their potential to interrupt or damage the pipeline of food supplies – especially if effective control is lost.

This special issue includes articles by ILRI scientists Brian Perry and Delia Grace and another by  Solenne Costard et al. They describe the impacts of livestock diseases and their control on growth and development processes that are ‘pro-poor’.

Taking a value-chain approach that includes keepers, users and eaters of livestock, they identify diseases that are road blocks on ‘three livestock pathways out of poverty’. They discuss livestock impacts on poverty reduction and review attempts to prioritize the livestock diseases relevant to the poor. They note that a high impact of a disease does not guarantee high benefits from its control and recommend taking other factors into consideration, including technical feasibility and political desirability.

They conclude their paper by considering how we might better understand and exploit the roles of livestock and improved animal health by posing three speculative questions on the impact of livestock diseases and their control on global poverty:
(1) How can understanding livestock and poverty links help disease control?
(2) If global poverty reduction were the aim of a livestock disease control program, how would that program differ from our current model?
(3) How much of the impact of livestock diseases on poverty is due to disease control policies rather than the diseases themselves?

African cattle to be protected from killer disease

ITM Vaccine

Millions of African families could be saved from destitution thanks to a much-needed vaccine that is being mass-produced in a drive to protect cattle against a deadly parasite.

East Coast fever is a tick-transmitted disease that kills one cow every 30 seconds – with one million a year dying of the disease.

Calves are particularly susceptible to the disease. In herds kept by the pastoral Maasai people, for example, the disease kills from 20 to over 50 per cent of all unvaccinated calves. This makes it difficult and often impossible for the herders to plan for the future, to improve their livestock enterprises and thus to raise their standard of living.

An experimental vaccine against East Coast fever was first developed more than 30 years ago. This has been followed by work to allow the vaccine to be produced on a large scale, with major funding from the UK Department for International Development (DFID) and others.

East Coast Fever puts the lives of more than 25 million cattle at risk in the 11 countries where the disease is now endemic, and endangers a further 10 million animals in new regions such as southern Sudan, where the disease has been spreading at a rate of more than 30 kilometres a year. The vaccine could save the 11 affected countries at least £175 million a year.

The immunization procedure – called “infection-and-treatment” because the animals are infected with whole parasites while being treated with antibiotics to stop development of disease – has proved highly effective. However, initial stocks produced in the 1990s recently ran low.

The International Livestock Research Institute (ILRI), at the request of the Africa Union/Interafrican Bureau for Animal Resources and chief veterinary officers in affected countries, produced one million doses of vaccine to fill this gap. However, for the longer term it is critical that sustainable commercial systems for vaccine production, distribution and delivery are established.

With UK£16.5 million provided by DFID and the Bill & Melinda Gates Foundation, the charity GALVmed is fostering innovative commercial means to do just this, beginning with the registration and commercial distribution and delivery of this new batch of the vaccine. This will ensure that the vaccine is made available, accessible and affordable to livestock keepers who need it most and to scale up its production for the future.

International Development Minister Mike Foster said:

“Some 1.3 billion of the world's poorest people rely on livestock for their livelihoods. Many Africans depend on the health of their cattle for milk, meat and as their only hard asset for trade and investment. A smallholder dairy farmer can take years to recover economically from the death of a single milking cow. That’s why it’s vital that every possible step is taken to ensure that these essential vaccine doses are sustainably produced, tested and made available to the people who need them.

“DFID is supporting GALVmed to explore ways of transferring the production and distribution of the vaccine into the private sector through local manufacturers and distributors. This is extremely important in making the vaccine affordable, accessible and – crucially – sustainable.”

GALVmed CEO Steve Sloan said:
“Funded by DFID and the Bill & Melinda Gates Foundation, GALVmed is working to protect livestock and the livelihoods of their owners. Thanks to the highly effective East Coast fever vaccine developed over many years by researchers working in East Africa and then refined and mass produced by ILRI, cattle invaluable to pastoralists such as the Maasai as well as smallholder dairy farmers are being protected. 
“The survival of cattle for the millions who live on tiny margins has a direct effect on quality of life and the dignity of choice and self-determination. Collaborating with ILRI and partners in the developing world, including governments and veterinary distributors and those from the private sector, GALVmed is working to embed the vaccine through registration in East African countries and to scale up its production so that it remains accessible to poor people.
“This pioneering registration effort aims to ensure that the vaccine is approved and monitored by affected nations and enables local firms to sell and distribute it, embedding its sustainability. Registration in Malawi is already complete, with significant progress in Tanzania, Kenya and Uganda.”
ILRI veterinary scientist Henry Kiara, who has conducted research on the live vaccine for 20 years, explains that ILRI is “looking forward to commercialising the production, distribution and delivery of the vaccine to the smallholder and emerging dairy producers as well as livestock herders” in this region of Africa. “Now that all the building blocks are in place, thanks to past investments by DFID and others”, he says, “we are excited to be at a stage where this vaccine can ‘take off’.”

Over the past several years, the field logistics involved in mass vaccinations of cattle with the infection-and-treatment method have been greatly improved, due largely to the work of a private Company called VetAgro Tanzania Ltd, working with Maasai cattle herders in northern Tanzania. Sustainability underpins GALVmed’s approach and the charity is working with developing world partners to ensure that the vaccine is available to those who need it most, bringing public and private partners together.


About the vaccine
The infection-and-treatment immunisation method against East Coast fever was developed by research conducted over three decades by the East African Community, the Kenya Agricultural Research Institute (KARI) at Muguga, Kenya (www.kari.org), and the International Livestock Research Institute (ILRI), in Nairobi, Kenya (www.ilri.org). This long-term research was funded by the UK Department for International Development (DFID) (www.dfid.gov.uk) and other donors of the Consultative Group on International Agricultural Research (CGIAR) (www.cgiar.org). The first bulk batch of the vaccine, produced by ILRI 15 years ago, has protected one million animals, whose survival raised the standard of living for livestock keepers and their families. Field trials of the new vaccine batch, also produced at ILRI, are being completed in accordance with international standards to ensure that it is safe and effective.

About East Coast fever
East Coast fever was first recognized in southern Africa when it was introduced at the beginning of the twentieth century with cattle imported from eastern Africa, where the disease had been endemic for centuries. It caused dramatic losses with high cattle mortality. It has persisted in 11 countries in eastern, central and southern Africa – Burundi, Democratic Republic of Congo, Kenya, Malawi, Mozambique, Rwanda, Sudan, Tanzania, Uganda, Zambia and Zimbabwe. The disease devastates the livelihoods of small-scale mixed crop-and-livestock farmers and smallholder and emerging dairy producers, as well as pastoral livestock herders, such as the Maasai in East Africa.

East Coast fever, or theileriosis, is a devastating cancer-like disease of cattle that often kills the animals within three weeks of infection. It is caused by the single-celled parasite Theileria parva, which is transmitted by the brown ear tick (Rhipicephalus appendiculatus) as it feeds on cattle. In addition to producing the infection-and-treatment vaccine, ILRI is also working to develop a genetically engineered next-generation vaccine.

Some 70 per cent of the human population of sub-Saharan Africa – around half a billion people – depend on livestock for their livelihoods, with farming and herding families relying on cattle for vital sources of food, income, traction, transportation and manure to fertilise croplands.

A case study showing the impact of the disease on Maasai herders is included below. Further case studies illustrating the impact of the infection-and-treatment vaccine on people’s lives are available on the GALVmed website at: www.galvmed.org/path-to-progress

Case Study: East Coast fever in Tanzania

Maasai herders in Tanzania have been particularly devastated by East Coast fever. In parts of northern Tanzania, more than 1 in 5 calves die before reaching maturity (54 months) in the lowlands and more than one third fail to reach maturity in the (wetter) highlands, where tick-borne and other diseases are more prevalent.

Although the infection-and-treatment vaccine is a “live” vaccine, and thus needs to be stored in liquid nitrogen and administered by skilled practitioners, after which the animals must be monitored by experts for several days, the Maasai here are desperate for the new batch to be ready.

Introduction of the previous batch in recent years has drastically reduced calf mortality, from up to 80 per cent to less than 2 per cent. The protection afforded by the vaccine is so good that Maasai herders are willing to pay for these vaccinations. The vaccine appears to protect the animals against other ailments as well and, in addition, those mature animals that are marked with ear tags as having been vaccinated are fetching up to 50 per cent higher prices in the market. The vaccine is allowing these cattle herders to sell more animals and to invest their new income in, for example, bettering their household diets or paying for their children’s education. The new access to this vaccine is facilitating a transition among the Maasai in herd management, from a subsistence- to a market-orientation.

GALVmed has regular contact with those on the ground to improve access to the vaccine, including a meeting with 25 Masaai livestock keepers in Arusha, in northern Tanzania, earlier this year. At that meeting a Masaai representative stated:

“Please thank all those people who made the vaccine and also those who make it available for us to buy. Tell them not to stop their good work. No cattle means no Maasai – and no East Coast fever vaccine means no cattle.”

 

Towards customer oriented animal health services

The Scientific and Technical Review features ‘participatory epidemiology’ – a customer-oriented approach to disease control and surveillance that is being successfully applied in the battle against bird flu in Indonesia.

The latest issue of the World Animal Health Organization’s (OIE) Scientific and Technical Review contains 21 articles submitted by experts from all over the world describing different animal disease surveillance, control and elimination strategies, including an article on ‘participatory epidemiology’ for the control of deadly animal diseases.
Animal healthParticipatory epidemiologists rely on local knowledge to gather data on how disease is spreading, kept in circulation, and which diseases have most impact on livelihoods, from the perspectives of those affected. This ‘customer-oriented’ approach is throwing up surprises and proving to be working well for a variety of diseases that have big implications for animal health and veterinary public health worldwide.

The authors of the paper, ‘Participatory epidemiology in disease surveillance and research’, from the International Livestock Research Institute (ILRI), Food and Agriculture Organization of the United Nations (FAO), Ministry of Agriculture, Jakarta and United States Agency for International Development (USAID), summarise current field applications of participatory epidemiology and highlight lessons learned, future challenges and possible new areas for research. They argue that with the increasing international focus on emerging and re-emerging zoonotic diseases (animal to human transmitted), there is an urgent need for better integration of veterinary and public health surveillance programmes.

New approaches to new and old diseases

Traditionally, veterinary authorities and scientists approach disease outbreaks by making expert diagnoses and devising control solutions, with little involvement or consultation with the farmers affected. Participatory epidemiologists work differently and livestock keepers play a central role as key informants.

ILRI’s participatory epidemiologist, Christine Jost explains, ‘Participatory epidemiologists understand the importance of tapping into local knowledge and encouraging the participation of people affected. By involving local livestock keepers, we can gather valuable data on how disease is spreading and kept in circulation.

‘In poor countries there is often a lack of detailed information on disease outbreaks and prevalence. This is largely due to a lack of veterinary infrastructure, and also because there are typically many remote and isolated communities that are hard to reach. Even when there is some infrastructure in place, many authorities assume that farmers will come to their offices to report diseases. However, farmers would have to travel long distances to reach veterinary posts and incur significant costs when reporting disease problems. Thus it is very difficult to assess the real disease situation and the impacts of animal diseases on livelihoods.’

‘We go out into local communities and we talk to villagers. Local livestock keepers are critical in helping us establish livestock disease prevalence, symptoms, recent outbreaks, and also the impacts of different animal diseases from their perspectives. This approach is very much community centred and ‘customer-oriented’, says Jost.

Country experiences

This customer-oriented approach has thrown up some surprises which and reinforced the importance of actively involving local livestock keepers in disease control and surveillance plans and assessing disease priorities.

In Pakistan, authorities had previously thought that Foot and Mouth disease had the most important economic impact on farmers. However, participatory epidemiologists found that most farmers could cope with production losses from Foot and Mouth disease, but they could not cope with the impact of haemorrhagic septicaemia. These farmers took a more holistic view and considered risks and coping mechanisms, alongside economic impacts, when they prioritised diseases. This resulted in a rethinking of how diseases were prioritised by authorities.

In Indonesia, participatory epidemiologists, highlighted the true extent of bird flu. The avian influenza programme was first implemented in Indonesia in 2006 as a pilot programme and this has been rapidly expanded. When the programme was initiated, the extent of bird flu infection was not known. However, participatory epidemiologists found that bird flu was circulating unimpeded in backyard poultry, and within the first 12 months of operation, 800 disease events were detected. The large number of outbreaks detected overwhelmed the response capacity of the district animal health infrastructure, and led to recognition of the need to re-evaluate the national control strategy.

In Kenya, ILRI participatory epidemiologist, Jeff Mariner, led a multi-disciplinary team of participatory epidemiologists, economists and social scientists who assessed the impacts of the recent Rift Valley fever outbreak (a total of 684 human cases including 155 deaths of RVF were reported in Kenya between November 2006 and March 2007). This United States Agency for International Development (USAID) funded project generated some surprising results. One of the key findings was the importance of monitoring livestock owners’ local observations in early warning systems for preventing future outbreaks of the disease. The team is now about to start a follow-on project, contracted by FAO with USAID funds, to apply those lessons to Tanzania, and to develop guidelines for government decision-makers in Kenya and Tanzania so that they can have policies that more effectively take into consideration livestock owners’ knowledge for Rift Valley Fever prevention and control.

The future

While veterinary participatory epidemiology approaches are proving to be working well for various diseases, the authors of the Review paper argue that with the increasing international focus on emerging and re-emerging zoonoses, there is a need for better integration of animal health and public health surveillance programmes.

Traditionally, there is little collaboration or sharing of information between the veterinary and public health sectors. However, in Indonesia, the two sectors are now working together and applying participatory approaches in the fight against bird flu. Veterinary participatory disease surveillance is being used to target participatory public health surveillance to the most at-risk human populations – those whose poultry are experiencing outbreaks of active disease.

ILRI is also involved in another project in Indonesia, which commenced in August 2007. This is being funded by USAID.

According to Jeff Mariner, ‘This project focuses on different applications of participatory epidemiology methods in research.

‘We are testing the impact of alternative avian influenza disease control strategies on disease incidence, as well as testing the feasibility of various control options from an operational and livelihoods viewpoint’ says Mariner.

Mariner, Jost and colleagues are also involved in a pan-African project – Participatory Approaches to Disease Surveillance in Africa (PADSA) – which began in October 2007. The project, scheduled to be completed in two years, involves research to evaluate and apply participatory risk-based approaches to bird flu surveillance and to document lessons learned.

Need for veterinary and public health to work more closely together

The authors of the Review paper argue for the need for veterinary and public health to work more closely together and to apply participatory approaches. They make the following recommendations:

  • Expand the field of participatory public health through active research to identify public health surveillance and response gaps that can be filled using participatory methods.
  • Provide advocacy for policies that recognise veterinary services as integral to public health.
  • Devise innovative ways to integrate participatory disease surveillance workers and participatory public health practitioners in the field; and
  • Create effective models for integrating public health and veterinary surveillance, including the development of unified ‘public health’ databases.

One step forward has been the establishment of the Participatory Epidemiology Network for Animal and Public Health. Its purpose is to advance the science of participatory epidemiology through targeted research, capacity building, policy enhancement and practitioner education. The network is coordinated by ILRI and includes FAO, OIE, AU-IBAR, and nongovernmental organisations experienced in participatory epidemiology methods.

Article citation
Article reference: CC Jost, JC Mariner, PL Roeder, E Sawitri and GJ Macgregor-Skinner (2007). Participatory epidemiology in disease surveillance and research. Scientific and Technical Review. Volume 26 No 3. The Office International des Epizooties (OIE). pp 537-547. http://www.oie.int/doc/ged/D4693.PDF

Linked articles

Controlling bird flu in Indonesia through local knowledge ILRI news April 2007: https://newsarchive.ilri.org/archives/494

Further information:

Christine Jost
Veterinary Epidermiologist
International Livestock Research Institute (ILRI)
Nairobi, Kenya
Email: c.jost@cgiar.org
Telephone: +254 (20) 422 3435
OR
Jeff Mariner
Veterinary Epidemiologist
International Livestock Research Institute (ILRI)
Nairobi, Kenya
Email@ j.mariner@cgiar.org
Telephone: +254 (20) 422 3432

Germany helps Africa fight bird flu by investing in its people

Substantial GTZ support provided to ILRI and AU-IBAR has provided 80 laboratory staff in 37 African countries with specialized knowledge in rapid detection of highly pathogenic avian influenza
 
This program of the German Technical Cooperation (GTZ) for early detection of bird flu in Africa did more than train people in advanced techniques for diagnosing a new disease. It invested in people, connecting them in a ‘who’s who’ of skilled African laboratory staff as well as a handful of international bird flu experts focusing on Africa. It united these laboratory experts in a common cause.

As Carola von Morstein, coordinator of the GTZ Task Force on Avian Influenza, puts it, ‘This—remarkably the first regional training in Africa to diagnose avian influenza—is helping to improve transparency, communication and information exchange in bird flu campaigns. We will publish in print and on the web a training manual so we can widely share the lessons learned in this training. One of those lessons is the great advantage to be gained in coordinating work to prevent and control bird flu across the continent.’

Staff at the International Livestock Research Institute (ILRI) and the Africa Union’s Interafrican Bureau for Animal Resources (AU-IBAR), who organized the series of intensive training courses conducted over the last year across the continent, are interested in continuing their work with GTZ to sustain this cooperation among agricultural, veterinary and medical experts. Such inter-sector cooperation in disease control is regrettably unusual in all countries but particularly so in those lacking resources to bring together experts from different ministries and disciplines.

ILRI’s research director John McDermott is excited about this cooperative aspect of the project. ‘The network of African veterinary and human diagnosticians created by this training over the past year has great potential. It has fostered “diagnostic champions” in Africa who are being consulted by their colleagues. The benefits of this will go beyond avian influenza to other important infectious diseases of both people and animals.’

ILRI’s director general Carlos Seré also sees opportunity to build on the momentum that has been created. ‘We’re interested to explore with others how this regional emergency training might be transformed into long-term indigenous capacity-building for better control of infectious diseases in Africa.’

Other partners involved in organizing the training courses or providing training materials were the Food and Agriculture Organization of the United Nations (FAO), the World Animal Health Organization (OIE), the World Health Organisation (WHO) and the U.S.-based Centres for Disease Control (CDC). ILRI and AU-IBAR worked closely together to conduct a basic 10-day training course that they held in three countries: Cameroon, Kenya and Senegal. They drew trainers from OIE/FAO/WHO avian influenza reference laboratories, ILRI, AU-IBAR, CDC-Kenya, the Institut Pasteur, the Centre Pasteur and African universities and research organizations.

These courses revealed that most African countries have the capacity to collect samples of bird flu virus, including the highly pathogenic H5N1 avian influenza virus, and ship these to designated laboratories for analyses. Some of these labs can also perform basic serological tests for bird flu virus. But few of them are equipped with the advanced diagnostic tests in molecular diagnosis and virology or with the BL3 facility (a laboratory built to a secure biosafety level 3) needed to handle the deadly live H5N1 virus. ILRI and AU-IBAR staff organizing the training courses targeted the few labs that did have these facilities to serve as regional reference laboratories and provided 20 of their staff with two advanced training courses (one in English, the other in French) conducted at South Africa’s ARC-Onderstepoort Veterinary Institute (OVI), in Pretoria, which is equipped with all the facilities needed for diagnosis of avian influenza. (OVI had previously trained staff in southern African countries.)

Funding for this project was provided by Germany’s Federal Ministry for Economic Cooperation and Development (BMZ) and implemented by GTZ within its ‘Poverty Reduction in Rural Areas’ project. The latter works to boost—in a sustained manner—the capacity of developing countries to prepare for and respond to outbreaks of bird flu. With uncommon foresight, this German project further helps countries implement preventive measures that help their farming communities maintain their livestock, the mainstay of livelihoods of the rural poor. Among the farm animals at risk from zoonotic diseases and conventional programs implemented to control them are many local poultry breeds kept by the poorest of the poor.

Carola von Morstein, leader of the GTZ Task Force conducting this pro-poor work fighting avian and human influenza, visited Nairobi this week to consult with ILRI and AU-IBAR directors and scientists who organized the training and tailored the English and French courses to suit African circumstances.

In early July, the first follow-up training took place in three veterinary laboratories in Ghana. Staffs of the laboratories in Accra, Pong Tamale and Kumasi were trained by the German Friedrich-Löffler-Institute (FLI). This Federal Research Institute for Animal Health has a Task Force for Epidemiology. GTZ and FLI are together providing training to affected countries such as Ghana. GTZ also procured for these laboratories equipment, such as Quick Tests Influenza Kits, V-bottomed Microtest-Plates and Pipettes, to ensure that the country is equipped for diagnosis of bird flu.

For more information about this GTZ project, email the GTZ task team:
carola.morstein-von@gtz.de> or
kerstin.schoell@gtz.de

or the Rene Bessin at AU-IBAR:
rene.bessin@au-ibar.org

or Duncan Mwangi or Roger Pellé at ILRI:
d.mwangi@cgiar.org and r.pelle@cgiar.org

Pioneering bird flu research program launched today

A GBP3.9 million (USD7.8 million) study, launched today by the UK's Department for International Development (DFID) to develop better ways of controlling bird flu aims to help the world's poorest farmers tackle avian flu and safeguard their livelihoods.
 
The DFID-funded research programme will examine the best ways to control avian flu and also how to reduce the impact of the disease on poor peoples’ livelihoods. The programme focuses on Africa and Southeast Asia, with initial research to be conducted in Thailand, Vietnam, Indonesia, Cambodia, Kenya, Ethiopia, Mali and Nigeria.  The International Livestock Research Institute (ILRI) and International Food Policy Research Institute (IFPRI) will manage the research in Africa, while in Southeast Asia the research will be managed by the United Nation’s Food and Agriculture Organisation (FAO), the Royal Veterinary College and the University of California at Berkeley.

John McDermott, ILRI’s Deputy Director General for Research, says ‘In global avian influenza discussions there are many different perspectives. This project seeks to provide evidence on the impacts and control of avian influenza from the perspectives of developing country farmers, technical staff and policy makers,  to allow them to effectively make decisions of importance to them.’

New Approach
The DFID-funded research programme marks a new approach as previous work has largely focused on eradicating Highly Pathogenic Avian Influenza (HPAI) from poultry populations and preparing for a potential human pandemic.

Launching the programme today, the UK’s International Development Secretary, Hilary Benn, said: ‘As well as claiming lives, avian flu – and the measures taken to control it – is damaging the livelihoods of farmers in the developing world. It is important to investigate how best to protect them when avian flu strikes.

‘This pioneering research will help find ways of helping the poor while also ensuring appropriate control measures are followed so that farmers do not hide, slaughter or eat infected birds. The first results of the study are expected within a year and will be discussed with policy makers in Africa and Asia.’

The potential impact on agriculture of the continuing spread of HPAI and the fear of this developing into a human pandemic are very great. The World Bank recently estimated that a pandemic could reduce the world’s GDP by five per cent, with a higher proportional loss in developing countries. To date, HPAI infections have claimed more than 170 lives in 12 countries since 2003 and, in South East Asia, led to the culling of more than 140 million birds with a total estimated economic loss to the region of more than $10 billion.

Jeff Mariner, senior epidemiologist at ILRI, says, ‘Although the potential of HPAI to adapt to man and cause a global pandemic is the primary concern motivating much of the donor response to this disease in the world, human disease is as yet a rare event. Very few farming communities have actually experienced human cases. The primary concern of farmers today is the negative impact that repeated waves of poultry mortality due to HPAI have on their livelihoods. Understanding the impact of HPAI in poultry on peoples’ livelihoods will provide entry points to motivate and drive effective control programmes. Enhanced control of HPAI to reduce the risk of a human pandemic is only possible through win-win scenarios that address the present effects of HPAI.’

Further information:
Click here for the DFID press release

Click here
for the IFPRI press release

Developing-country farmers to benefit from new foot-and-mouth disease ‘road map’

A major new report launched today charts a pathway towards the effective control of foot-and-mouth disease (FMD) in developing countries where the disease is a serious and growing threat.
The report, ‘Global Road Map for Improving the Tools to Control Foot-and-Mouth Disease in Endemic Settings’, launched today (17 April 2007) at the headquarters of the United Nations Food and Agriculture Organization (FAO), in Rome, envisions ‘a world in which livestock-based livelihoods, enterprises and trade can flourish unimpeded by FMD’. The road map focuses on the outputs of a workshop held in Agra, India, in December 2006.

Efficacious vaccines, strategically deployed, have revolutionized control of many infectious human and animal diseases. For FMD, which severely constrains the welfare of millions of small-scale livestock farmers in the developing world, currently available vaccines do not meet many of the basic requirements necessary for sustainable control. FMD continues to be a persistent constraint to livestock production throughout the developing world. It can significantly reduce production of milk and meat and limits the ability of draft animals to work.

Foot-and-Mouth Disease (FMD): Quick Facts

Foot-and-mouth disease (FMD) affects cloven-hoofed animals and is one of the most contagious diseases of mammals, with great potential for causing severe economic loss. FMD is endemic in parts of Asia, Africa, the Middle East and South America.
Hosts: Principally cattle, domestic buffaloes, yaks, sheep, goats, domestic and wild pigs and wild ruminants.
Transmission: Direct or indirect contact; animate vectors (humans, etc.); inanimate vectors (vehicles, implements); airborne, especially in temperate zones (up to 60 km overland and 300 km by sea).
Sources: Incubating and clinically affected animals; breath, saliva, faeces, and urine; milk and semen; meat and by-products and carriers, particularly cattle and water buffalo; convalescent animals and exposed vaccinates (virus can persist for up to 30 months in cattle or longer in buffalo, 9 months in sheep).

Source: Excerpted from World Organisation for Animal Health (OIE) Animal Diseases Data www.oie.int

According to John McDermott, deputy director general for research at the International Livestock Research Institute (ILRI), ‘FMD is a major obstacle to productivity and market access in many of ILRI’s target regions, particularly South Asia, the Horn of Africa and southern Africa. It severely limits market opportunities for poor farmers and nations wishing to access more lucrative markets, both regionally and internationally.

‘FMD also can increase the vulnerability of small-scale farmers in mixed cropping systems where animal traction is important. For example, in Southeast Asia where rice is a staple, people are heavily reliant on water buffalo for ploughing. A FMD outbreak leaves the buffalo open to secondary infections, putting these highly valued animals out of action for a very long time.’

Brian Perry, who recently retired as senior scientist at ILRI and is now collaborating with ILRI on this and other projects, says, ‘There is an urgent and long overdue need to address the special research needs of poor people in endemic FMD settings. Current research on vaccines and associated tools for the control of FMD is driven more by the needs of relatively rich FMD-free countries which are dealing with and eliminating incursions of the disease, rather than by the needs of relatively poor FMD-endemic countries which are interested in longer-term management and control of the disease.’

In early 2006, Perry, ‘navigator’ of the FMD ‘Roadmap’ process, approached the Wellcome Trust (UK) to seek support for an initiative to tackle this need. Following submission of a joint proposal from ILRI and the UK’s Institute for Animal Health (IAH), the Wellcome Trust (UK) agreed to provide partial funding and, with the support of additional donors—notably the European Union—planning was begun to organize the meeting that became the launch pad of the ‘Global Road Map for Improving the Tools to Control Foot and Mouth Disease in Endemic Settings’.

‘We decided at an early stage that the road map workshop should be held in an FMD-endemic country’, says Keith Sones, workshop facilitator and co-editor of the report. ‘India, with its impressive and ambitious ongoing program to control FMD, was an obvious choice. The Indian Council of Agricultural Research (ICAR) was very supportive and agreed to host the workshop in Agra.’

According to VK Taneja, deputy director general of animal scrence at ICAR, ‘Livestock production in India is growing faster than arable agriculture. The value of output from the livestock sector has risen over the years and is now 26% of the total value of output from agriculture. It is predicted that livestock will contribute more than half of the total agricultural output in the next 25–30 years.’

‘One of the biggest impediments to growth of the livestock sector is the large-scale prevalence of FMD’, says Taneja. ‘In most Asian countries, FMD is endemic and severely limits the region’s ability to participate in international trade. Developmental strategies for control and eradication of FMD—including improving existing conventional vaccines and diagnostics for their quality and efficacy—will pave the way for the improved growth and productivity of livestock, especially in small-farm production systems, and for ensuring their participation and access to global markets.’

While the economic losses associated with major outbreaks of FMD in industrial countries, notably in Europe in 2001, grabbed world headlines, the disease continues to cause enormous, recurrent losses across large swathes of Asia, Africa, the Middle East and South America.

‘The direct losses alone due to FMD in India are estimated to be more than USD4.5 billion per year; indirect production losses could be much more’, says Dr R Venkataramanan, principal scientist at the Indian Veterinary Research Institute, in Bangalore.

‘The Roadmap report recognizes that vaccines currently available for the control of FMD are not ideal for use in many developing countries’, says Perry. ‘To remain effective they must be kept under constant refrigeration, so the protection they offer is better suited to the needs of FMD-free countries rather than countries where the disease is a constant and daily threat. We realize that it will take considerable time to develop and make available new improved vaccines suitable for developing- country conditions. But in the meantime much can be done with current vaccines and diagnostics, especially if their use is complemented with sound epidemiological and economic decision-support tools to guide and facilitate their effective use.’

Alexander Müller, FAO Assistant Director-General, declares that ‘FAO is ready to support this important initiative, which is expected to provide some of the breakthroughs needed for use in the most affected areas, and which will support the efforts of FAO with the World Organisation for Animal Health (OIE) to reduce FMD risk by promoting progressive control of FMD at all levels. The initiative from the research community is strongly needed and we are happy to play our role in launching this initiative and facilitating transfer of effective new approaches.’

Work undertaken after the Agra workshop ensured that research proposals were developed for funding high-priority areas identified during the workshop. Lead writers facilitated development of concept notes to be submitted to donor agencies in the fields of immunology, vaccine design and epidemiological and economic tools. In addition, some regional concept notes were developed focussing on southern Africa, South and Southeast Asia and South America. These draft concept notes are included in the road map report and provide guidance on further development of the tools for FMD control. Using the products of the road map process, ILRI and partners are now developing a project proposal that, once funded, will move the world closer to the vision of ‘a world in which livestock-based livelihoods, enterprises and trade can flourish unimpeded by FMD’

India

Participants of the Global Road Map for Improving the Tools to Control Foot-and-Mouth Disease in
Endemic Settings workshop held at Agra, India, 29 November – 1 December 2006

Download the FMD Road Map report

Citation: Perry BD and Sones KR (eds). 2007. Global road map for improving the tools to control foot-and-mouth disease in endemic settings. Report of a workshop held at Agra, India, 29 November–1 December 2006, and subsequent road map outputs. ILRI (International Livestock Research Institute), Nairobi, Kenya. pp. 88

Vaccine agency to reduce loss of human and animal life in developing countries is launched

The Global Alliance for Livestock Veterinary Medicine (GALVmed) recently unveiled animal health projects it will tackle over the next ten years.

GALVmed announced progress on vaccine and treatments for Newcastle disease in poultry and East Coast fever and Rift Valley fever in cattle at its international launch at the Kenya Agricultural Research Institute (KARI), in Nairobi, on Friday 9 March 2007. This marked the beginning of a 10-year program aimed at creating sustainable solutions to the loss of human and animal life caused by livestock diseases, which threaten 600 million of the poorest people in developing countries in Africa, Asia and Latin America.

GALVmed, a non-profit organization funded by the UK Department for International Development (DFID), is partnering with private and public-sector organizations around the world. It has identified 13 livestock diseases as key targets for development of livestock vaccines and animal health diagnostics and medicines. Founder members of the agency include the International Livestock Research Institute (ILRI), FARM-Africa, Pfizer, Intervet and Merial. GALVmed exists to broker partnerships among pharmaceutical companies and other public and private-sector organizations to develop accessible and affordable animal vaccines for the whole world’s poorest farmers.

Zoonotic diseases, which are transmitted between animals and humans, mainly afflict the poorest households, as evidenced by the recent outbreak of Rift Valley fever in livestock in Kenya, which killed 150 people. Brian Perry, a senior scientist at ILRI, warns that ‘Today, combating livestock diseases is everybody’s business – tropical animal diseases are no longer “just a local problem”. For example, there is a threat that diseases like Rift Valley fever will follow bluetongue into Europe.’

GALVmed’s chief executive Steve Sloan explains that ‘Every year, poor farmers worldwide lose an average of a quarter and in some cases half, of their herds and flocks to preventable disease. This devastates developing economies. Many of these are zoonotic and so also cause human deaths.

Livestock play a critical role in helping people escape poverty. Livestock disease is one of the greatest barriers to development for poor livestock keepers. Flocks and herds die every year from diseases for which vaccine simply do not exist or are beyond the reach of the poor. John McDermott, ILRI’s deputy director general for research says, ‘ILRI scientists and partners have done ground breaking science to develop an experimental vaccines to protect cattle against East Coast fever. The next steps are to conduct trials to facilitate the delivery of this vaccine to the farmers. To do that, we need specialist partners who will test, manufacture and market the vaccine and make it accessible and affordable to the thousands of livestock keepers afflicted by this cattle killing disease.

Click here for the GALVmed News release.

To find out more about GALVmed visit the website
www.galvmed.org