ILRI vaccine advances published in February 2006 PNAS journal

Public-private partnership makes major step towards improving livestock health and reducing poverty.

The devastating effects of East Coast fever on the livelihoods of small-scale farmers may one day be a thing of the past as a team of international scientists moves closer towards the development of a vaccine.

“East Coast fever is an intractable problem that ravages cattle of the poor in Africa. The good news is that this can be solved by high-tech science and technological innovations, achievable through strategic partnerships’’. Evans Taracha – ILRI East Coast Fever Vaccine Project Leader

Every year, East Coast fever destroys the small farmer’s dream of escaping poverty in Africa. Killing more than a million cattle and costing some $200 million annually, this tick-borne disease rages across a dozen countries in eastern and central Africa. Now, an international team of scientists has taken the first major step toward a vaccine to prevent East Coast fever. Their work, published in the February 13-17 early online edition of the Proceedings of the National Academy of Sciences (PNAS), shows how genomics can generate pivotal new vaccines.

In the study, scientists from five institutions, including the International Livestock Research Institute (ILRI) and The Institute for Genomic Research (TIGR), identify five vaccine targets, or candidate proteins that could form the basis for an East Coast fever subunit vaccine. Based on combined bioinformatics analyses and lab tests, these proteins appear to provide a protective immune response to the disease. “This initiative took just three years, after many years of scientists trying other methods,” remarks Vishvanath Nene, former ILRI staff member, a study author and molecular biologist at TIGR. “It’s a huge jump forward.”

To make the jump, researchers used the genome sequence of the parasite responsible for East Coast fever. A tick-borne parasite, Theileria parva, causes the disease. When ticks infected with T. parva bite cattle, they transmit the parasite, launching the disease that typically kills cattle within a month. In July, 2005, TIGR led a research team that published T. parva’s genome sequence, representing roughly 4,000 genes, in Science.

In the current study, Nene, along with Malcolm Gardner and Claire Fraser-Liggett, also of TIGR, relied on known biology to search T. parva’s genome for potential vaccine proteins. First, scientists know that immunity to the parasite, and thus East Coast fever, emerges from immune system cells known as killer T cells. Second, they know that T. parva is an intracellular pathogen–it infects and secretes proteins inside cattle white blood cells, which become malignant. The white blood cell then unwittingly passes small fragments of the secreted parasitic proteins associated with a certain type if its own proteins along to its cell surface. And this is where a vaccine could come in: A vaccine made of the T. parva proteins found on the surface of host cells should trigger an immune response in cattle. Vaccinated cattle would then be protected from the parasite.

To find potential vaccine antigens, the TIGR researchers scanned T. parva’s entire genome for genes that make secreted proteins. In particular, they searched for genes that make a “secretion signal,” a telltale peptide sequence found at the start of secreted proteins. Sure enough, the scientists found some 400 T. parva genes containing the secretion signal. This set of genes provided a starting pool of candidate proteins. Based on further tests, the study’s research team, led by ILRI of Nairobi, Kenya, cloned 55 candidate antigen genes and screened those genes for response by killer T cells taken from cattle immune to East Coast fever. To complement TIGR’s gene selection strategy, ILRI also incorporated a random screen of T. parva DNA for vaccine candidates.

In total, the team found five candidate vaccine antigens. In lab tests, these antigens triggered a response from cattle immune killer T cells. Going a further step further, the scientists inoculated cattle with these antigens and then gave the cattle a potentially lethal dose of T. parva. When compared with control animals, vaccinated cattle showed significantly stronger immune response to the parasite.

“This study is a true milestone,” says Fraser-Liggett, president of TIGR. “It’s one of the first to take advantage of genomic technologies and build a test vaccine using immune killer T cells as a screening reagent.” In addition to TIGR and ILRI, the research team included scientists from: the Ludwig Institute for Cancer Research in Brussels; the Wellcome Trust Center for Human Genetics in Oxford; Sanofi Pasteur in Toronto; the University of Edinburgh; and Merial SAS, an international animal health company. ILRI and Merial have partnered to develop a vaccine against East Coast fever.

By using genomics to understand and fight T. parva, scientists may make advances against related parasites that cause malaria, tuberculosis, and other diseases in which killer T cells also play a role in immunity. What’s more, because T. parva launches a cancer-like illness inside the white blood cells of cattle, it may provide a model system for understanding the mechanics of cancer biology.

But for Nene, who was born in Kenya and worked at ILRI for 15 years before coming to TIGR in 2001, the march against East Coast fever is significant reward, itself. “This disease takes an enormous toll on the local society and economy of rural areas across eastern and central Africa, including Maasai and other pastoral communities,” he says. In particular, East Coast fever kills cattle kept by families trying to rise out of poverty. If researchers are successful, Nene notes, the entire region will have new reason to hope for a better life. Evans Taracha, ILRI project leader, also highlights the importance of strategic research partnerships to overcome this and similar diseases.

TIGR’s portion of the PNAS study was funded independently by TIGR and by sub-contract from the Animal Health Program of the United Kingdom Department for International Development, with previous contributions from J. Craig Venter and the ILRI for the T. parva genome project.

ILRI wins two top awards

ILRI vaccine developers won an award for Outstanding Scientific Article. Another ILRI team conducting research on savannah ecosystems shared an award for their innovative collaboration with Maasai landowners in Kenya.

Scientific Recognition

Each year, the Consultative Group on International Agricultural Research (CGIAR) recognizes the scientific contributions of the 15 agricultural research centres it supports through its Science Awards, presented at its Annual General Meeting (AGM), held each year in December.

At the CGIAR’s AGM held in Washington DC at the end of last year, scientists from ILRI and The Institute for Genomic Research (TIGR) picked up the award for ‘Outstanding Scientific Article’ for their paper, published in the top scientific journal Science, ‘Genome Sequence of Theileria parva: a Bovine Pathogen that Transforms Lymphocytes’. The team, led by Malcolm Gardner of TIGR, received a cash prize of US$10,000, which is being donated to fund travel for staff and students to attend conferences in this area.

The paper’s second author, ILRI scientist Richard Bishop, said: “We are delighted to receive this award. Our multi-partner collaboration and recent discoveries illustrate that African science is forging ahead – we are collaborating with world-class players and producing world-class science right here in Africa, for Africa.”

ILRI wins 2 awards

Pictured above from left to right: ILRI’s Director of Research, John McDermott, and TIGR scientist (and former ILRI staff member) Vish Nene, with the Award for ‘Outstanding Scientific Paper’. Looking on is ILRI’s Director General Carlos Seré and Bruce Scott, ILRI Director, Partnership and Communications.

Download TIGR/ILRI Press Release

Innovative Collaboration with Civil Society

The CGIAR also recognizes the contributions of innovative collaborations between CGIAR-supported centres and Civil Society Organizations (CSOs) through its ‘Innovation Marketplace Awards’. This year, 46 CSOs were invited to participate at the CGIAR Innovation Marketplace to showcase their collaborative work and share experiences.

ILRI’s collaboration with the Kitengela Ilparakuo Landowners Association (KILA) was one of four collaborations to win a Judges’ Award with a cash prize of US$30,000, to use for further collaborative work. ILRI has been collaborating with the Maasai of Kitengela Plains, located next to Nairobi National Park, in Kenya, since 2002. They have devised means to ensure that people, livestock and wildlife can live in harmony and have lobbied government to reduce fencing to allow the annual migration of wildlife though the Kitengela Plains, thus helping to prevent conflicts between wildlife and people and their livestock. Other collaborators of the program are Kenya Wildlife Service, Friends of Nairobi National Park, The Wildlife Foundation and Kajiado County Council.

The prize award was collected by ILRI’s CSO representative Ogeli Ole Makui and ILRI’s Mohammed Said. Makui said: “This award means so much to us. Our major challenge is to move forward and continue with the collaboration to help the community move forward. The Landowners Association will be using the prize money to fund further collaborative work.

ILRI wins 2 awards

Pictured above, from left to right: CGIAR Chair and Vice President of the World Bank Kathy Siena, the Program Officer of the Kitengela Land Lease Program, Ogeli Ole Makui and ILRI scientist Mohammed Said.

Download the award-winning poster

ILRI Awards

Dr Carlos Seré , ILRI’s Director General, said: “ILRI’s work is frequently recognized at the CGIAR’s annual awards. Each year the bar is raised and this year was no exception. Competition was tough with a very high standard of entries in all categories. We wish to extend our congratulations to the winners from our sister centres and are delighted that ILRI has won two of the top awards this year. This recognizes our commitment and contributions to both science and society.”

ILRI wins awards

Pictured above from left: ILRI Directors Carlos Seré and Bruce Scott and the President of the World Bank, Paul Wolfowitz at the CGIAR exhibit booth at the AGM in December 2006 in Washington, DC.

ILRI scientist Simon Graham wins international ‘Promising Young Scientist’ award

Young scientist receives prestigious award at the Consultative Group on International Agricultural Research (CGIAR)'s annual general meeting.


Simon Graham Award

Simon receives his awardSimon Graham, a veterinary immunologist at the Nairobi-based International Livestock Research Institute (ILRI), was bestowed the ‘Promising Young Scientist Award’ by the Consultative Group on International Agricultural Research (CGIAR) on 7 December 2005 by Ian Johnson, CGIAR Chairman and World Bank Vice President for Sustainable Development. This prestigious award was presented at the annual general meeting of the CGIAR, held in Marrakech, Morocco.

The award went to 33-year-old Graham for his research leading to the development of a sensitive and robust system for screening molecules that cause East Coast fever (ECF), a fatal disease of cattle in sub-Saharan Africa. Graham’s research, based at ILRI’s Nairobi laboratories, may also contribute to ongoing efforts to control tropical theileriosis, a cattle disease which puts 250 million cattle around the world at risk.

Simon Graham Dec 2005 During his first post-doctoral position at the Centre for Tropical Veterinary Medicine, Edinburgh, UK, in 1998, he developed an improved rapid screening and production of vaccines against the protozoan parasite Theileria annulata, which is responsible for tropical theileriosis.

In 2000, Graham joined a large multidisciplinary research team at ILRI whose goal is to develop a ‘subunit’ Simon At Workvaccine against the related protozoan parasite Theileria parva. (Subunit vaccines are based on molecular bits of parasites rather than whole parasites.) T. parva causes East Coast fever (ECF), which costs 11 countries of eastern, central and southern Africa US$300 million a year. ECF puts 28 million cattle at risk and annually kills 1 million animals, 90 percent of which are kept by poor dairy farmers and herders. There is a high demand from poor livestock owners for a cheap, effective, safe and easy-to-deliver subunit vaccine against this devastating disease of cattle.

Simon Graham and his ILRI team are working in collaboration with several centres of excellence, including the veterinary pharmaceutical giant Merial and a leading human vaccine research group at the University of Oxford, UK, to evaluate the ability of these molecules to protect cattle against ECF. Initial results are encouraging—there appears to be a significant association between an animal’s induction of killer T-cell responses and its levels of protection against development of disease. Graham’s results have within a short space of time had a major impact in moving the research close to its ultimate goal of producing a vaccine that will sustainably control not only ECF but also tropical theileriosis. The vaccine candidates identified by Graham have been filed with the US Patent & Trademark Office and the research is now being prepared for publication in the prestigious journal Proceedings of the National Academy of Sciences (PNAS).

‘Healing wounds’ in the Horn of Africa

Two livestock projects show how research can help emergency agencies deliver more relief per dollar.

Healing WoundsA cow killed by starvation in Ethiopia, a vast and poor cattle-keeping country in the drought-hammered Horn of AfricaResearch can benefit vulnerable communities facing natural disasters such as the current drought in Africa’s Horn. Research-based interventions like those provided by ILRI and other CGIAR Future Harvest Centres and partners help NGO, aid and emergency agencies deliver more relief per dollar.

Mitigating the effect of drought on livestock and their keepers in northern Kenya

The Horn of Africa is one of the poorest, driest, most conflict- and disaster-prone regions in the world. Livestock provide 25 percent of the region’s gross domestic product and up to 70 percent of household income. As drought intervals shorten and crop farmers plough up more and more former relatively wet rangelands, which were crucial dry-season grazing grounds for nomadic herders, the pastoralists are squeezed ever tighter. They lose their primes assets as animals die and every time they begin to recover it seems another drought or war strikes, knocking them another step down the poverty ladder.

In 2005, livestock scientists got together with a group of NGOs involved in emergency aid in northern Kenya to do something to keep those ‘living assets’ alive and productive.

ILRI scientists teamed up with two Italian NGOs—Cooperazione Internazionale, or COOPI, and Terra Nuova—as well as Vétérinaires Sans Frontières(VSF)-Belgium and VSF-Switzerland to run a Drought Response Program delivering essential animal health services to vulnerable pastoral communities across nine of Kenya’s most arid districts in the north. With the Department of Veterinary Services of the Government of Kenya, this Program in 2005 vaccinated over 2 million head of livestock (20 percent of the livestock population of the area), treated over 1 million animals and rehabilitated or constructed more than 35 water sources along livestock routes. The Program focused on sheep and goats, since small ruminants provide most of the cash and high-quality foods available to poor pastoralists.

‘We are targeting animal health because animals are the backbone of the pastoral economy,’ says COOPI’s Andrea Berloffa. ‘We want to do more than to intervene in a drought with food relief. We want to help people help themselves by supporting their traditional systems for overcoming drought and related emergencies.’ By reducing death and disease among their ruminant animals, the Program is helping pastoralists raise the productivity of their animal husbandry, and thus improve their livelihoods and nutritional status at the same time. The objective of the COOPI-VSF-ILRI Drought Response Program in northern Kenya is to keep the occurrence of infectious diseases among small ruminants under 20 percent.

This Program is funded by ECHO, the European Commission Directorate for Humanitarian Aid, the world’s largest source of humanitarian aid. ECHO has funded relief to millions of victims of natural and man-made disasters outside the European Union.

Belgian scientist Bruno Minjauw, who is the ILRI collaborator in this Program, strongly believes that researchers need to join hands with emergency as well as development workers if they want their products to speed benefits to people facing disasters. ‘We researchers want to be relevant!’ he says. ‘Too often research is totally separate from development and emergency work. Researchers have analytical tools that can improve drought relief’, he says. ‘ILRI, for example, has models for monitoring and evaluating emergency programs—and for reliably assessing their impacts. We have tools that are allowing COOPI to obtain the data they need quickly. For example, we provided high-resolution maps that this Program used to target its immunization campaign in northern Kenya.’

COOPI’s Berloffa agrees. ‘We need research centres to get reliable information on the impact of our projects. It’s easy to link development and research projects; what’s difficult is to link emergency and research programs because the window for action after an emergency is very short, while research is long-term by its nature.’

ILRI director general Carlos Seré says that the urgency of relief action often prohibits informed intervention. ‘Aid agencies are supposed to know, for example, where the most vulnerable pastoral communities in northern Kenya are located. However, there is no disaster so fortunate as to have at hand lots of pertinent information when it is needed. That’s where research institutions can help.’

For more information, contact ILRI scientist Bruno Minjauw at b.minjauw@cgiar.org or Francesca Tarsia of Cooperazione Internazionale (COOPI) at tarsia@coopi.org.

Building early warning systems to help pastoralists cope with disasters in the Horn of Africa
Another ILRI project is working with partners to develop ‘early warning systems’ to mitigate the effects of drought on pastoralists in northern Kenya and neighbouring countries.

Concerned that its relief aid in the Horn of Africa was fostering a culture of dependency rather than development, the United States Agency for International Development’s Office for Disaster Assistance (USAID/OFDA) asked researchers to help them find a better way. A network run by the Association for Strengthening Agricul¬tural Research in Eastern and Central Africa (ASARECA), known as the ASARECA Animal Agriculture Research Network (A-AARNET), has worked with ILRI and staff at Texas A&M University working on a GL-CRSP LEWS project (Global Livestock-Collaborative Research Support Program on Livestock Early Warning Systems) to better understand how pastoralists in the Horn of Africa deal with drought on their own, and how their systems could be reinforced instead of being replaced by handouts.

Project staff first determined what are the traditional coping mechanisms already employed in pastoral systems in Kenya, Tanzania, Uganda and Ethiopia. Staff also undertook a compre¬hensive resource mapping initiative to develop a GIS-based Crisis Decision Support System. This system will provide timely and accurate information to enable policymakers and affected communities to reduce losses occasioned by drought.

By conducting socio-economic surveys of critical areas along the Ethiopia-Somali border and in Burundi, the team constructed a detailed picture of the situation as pastoralists see it.  They learned how sales of livestock forced by drought can erase years of hard work, because large numbers of simultaneous sellers cause livestock prices to plunge. Many animals that had been donated to help rebuild herds were instead sold by herders to meet emergency food and income needs: farmers selling at any price just perpetuated the cycle of their poverty. Aid donors often bought animals for restocking within the same merchant channels, creating an illusion of restocking when actually the same animals were just being recycled, benefiting merchants the most.

Migrating herds and herders are plagued not only by shortages of water, pasture and fodder, but also by livestock diseases, to which exhausted and malnourished livestock easily fall prey. Diseases in a drought from 1995 to 1997 in Africa’s Horn, for example, killed an astonishing one-third to one-half of the all cattle of pastoral communities of southern Ethiopia and northern Kenya.

The improved understanding of the nomad’s dilemma obtained in this research revealed a number of opportunities being missed. Early-warning systems could help herders prepare for droughts by enabling them to sell animals in a coordinated fashion rather than in distress sales. Improved health care could save many animals stressed by drought. Working together, pastoralists could manage their herds to avoid over-grazing. This research project uses a biophysical model to predict forage availability; the forage map is updated every 10 days and forage availability is predicted three months down the line. (Visit the Teas A&M website to see these maps.) Using satellite radio, project scientists are able to upload this early warning information onto World Space Radio, which disseminates the information to scientists and animal owners in remote areas. (Mobile phones will be used for the same in the near future.) For more helpful tips and advice, you can visit here at 명품 레플리카.

Click here for the ILRI publication Coping Mechanisms and Their Efficiency in Disaster-Prone Pastoral Systems of the Greater Horn of Africa: Effects of the 1995–97 Drought and the 1997–98 El Niño Rains and the Responses of Pastoralists and Livestock, a project report published in 2000 by ILRI, A-AARNET and GL-CRSP LEWS (Global Livestock-Collaborative Research Support Program Livestock Early Warning System). Or email the ILRI coordinator of A-AARNET, Dr Jean Ndikumana at j.ndikumana@cgiar.org.

The disaster-to-development transition

The two reports above illustrate how livestock research is aligning with emergency and development projects in the Horn of Africa. The reports are encouraging. In agriculture, as in life, prevention is better than cure. Studies show that for every dollar spent on disaster preparedness, between US$100 and $1000 are needed after the event. Part of being prepared for a disaster is the ability to diagnose the problems. ‘Medical doctors don’t operate, even in an emergency, without first diagnosing the problem and applying the best science they can’ says Dr Carlos Seré, director general of the International Livestock Research Institute (ILRI). ‘Agricultural researchers need to team up with aid agencies to help guide relief aid so it does the most good.’

Around the world, from New Orleans to Mogadishu, the poor are the most vulnerable to disasters, whether natural or human-made. The poor in East Africa, for example, have no access to insurance to help them withstand otherwise catastrophic livestock losses in severe and long-lasting droughts. The rural poor are the most vulnerable, being located furthest from public services. ‘Reducing the vulnerability of the poor to disasters and conflicts should be approached through agriculture, because most of the poor are farmers’, says Dr Dennis Garrity, who directs ILRI’s sister centre in Nairobi, the World Agroforestry Centre (ICRAF).

The ‘Healing Wounds’ initiative of the CGIAR
The statements above were made by a panel of experts that met in Nairobi last October to discuss whether and how to pair emergency aid with research. The experts were brought together by the Alliance of Future Harvest Centres, 15 non-profit institutions, including ILRI and ICRAF, supported by the Consultative Group on International Agricultural Research (CGIAR). The panelists focused on a report called Healing Wounds published earlier in 2005. This book analyses the impacts of twenty years of CGIAR and partner research to bridge relief and development work in 47 countries across Africa, Asia and Latin America.

This Healing Wounds panel discussion, facilitated by popular Kenyan news moderator Wahome Muchiri, was convened by ILRI on behalf of the CGIAR on 13 October 2005. Initial presentations provided case studies of the role research has played in helping countries of the Horn of Africa rebuild their agricultural sectors after natural disasters and human conflicts. The discussion helped raise awareness among aid agencies, research and development organizations, the relief aid community and the general public about the ways in which research can contribute to disaster relief. Nairobi was chosen for this event because, as ILRI’s director general pointed out, Kenya is a ‘hot spot’ for CGIAR activities, with 13 of the 15 centres belonging to the CGIAR conducting work in the country and the East Africa region as a whole.

The panelists, in addition to the director generals of the two CGIAR centres ILRI and ICRAF, included Glenn Denning, Director of the Nairobi-based Millennium Development Goals (MDG) Centre of the UN Millennium Project, and Mark Winslow, an international development consultant and co-author of the Healing Wounds study.

Scientific experts gave evidence from the following research projects supporting the argument that research can magnify the benefits of emergency aid investments.

  • Building early warning systems to help pastoralists cope with disasters in the Horn of Africa. For further information, contact Nairobi-based ILRI coordinator of A-AARNET, Dr Jean Ndikumana: j.ndikumana@cgiar.org.
  • Mitigating drought effects on livestock in the nine most drought-afflicted districts of  northern Kenya. For further information, contact in Nairobi ILRI’s Dr Bruno Minjauw: b.minjauw@cgiar.org or COOPI’s Francesca Tarsia: tarsia@coopi.org.
  • Enhancing pastoralism in Africa’s arid and drought-prone Horn, home to 25 million nomadic herders. To buy a copy of the following book published in late 2005, Where There Is No Development Agency: A Manual for Pastoralists and Their Promoters, contact the book’s author, Dr Chris Field: camellot@wananchi.com.
  •  Alleviating hunger through vitamin A-enhanced sweet potato in conflict-ridden northern Uganda. For further information, contact Dr Regina Kapinga, a scientist from the International Potato Center (CIP), based in Uganda: r.kaping@cgiar.org.
  • Optimizing seed aid interventions to rebuild agriculture after disasters in Sudan, Uganda and Somalia. For further information, contact Dr Richard Jones, a scientist from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), based in Nairobi: r.jones@cgiar.org.

CDC expert updates Kenya on Avian Influenza

Kenyan CDC expert Dr Kariuki Njenga tells of Kenya's preparedness for bird flu. "The best way to manage the threat is to control the disease at its source – in birds."

Dr Kariuki Njenga, a Kenyan expert working with the International Emerging Infections Programme in the Kenya office of the US Center for Diseases Control (CDC), delivered a seminar on avian influenza to staff of the International Livestock Research Institute (ILRI) at their Nairobi headquarters on Thursday, 25 November 2005.

Dr Njenga said that the influenza viruses are some of the most intriguing and elusive in the world. Special characteristics of the highly pathogenic avian flu virus strain known as H5N1 increase the likelihood that there will be increased emergence of chimeric (new) viruses, one or more of which could cross over to humans and be transmitted from human to human and cause a flu pandemic.

Increased associations between animals and people, Dr Njenga said, especially in Southeast Asia, is providing a conduit for the avian influenza virus to come into contact with people as they handle dead or dying infected birds. Most of the 122 human cases of the disease, with 62 deaths, so far reported to the World Health Organization have occurred on backyard farms where poultry are kept.

‘Our main concern right now in Kenya and other countries in Africa along the migratory bird flyways’, said Dr Njenga, ‘are backyard chicken farmers’. More than three-quarters of Kenyans are rural farmers and it is estimated that more than 90 percent of them keep chickens. The fear is that wild birds infected with the deadly H5N1 virus strain now migrating to Kenya for the European winter might come in contact with domestic water birds, such as ducks, which then might contact free-scavenging chickens kept by poor rural people, and so the virus could be passed from birds to people. If this happens, the country would have to act within 21 days to contain the infection to prevent the outbreak spreading wide.

ILRI and CDC staff are part of a national task force that has been assembled in Kenya to deal with bird flu. This task force is providing early warning of bird die-offs and strengthening surveillance nationwide, developing a communications network and stock-piling anti-virals so that these are on handle to contain any outbreak. There is no effective vaccine to prevent a pandemic caused by the H5N1 flu strain.

The task force is instructing Kenyans to note any sick or dead birds. They should report these to veterinary or government authorities or they may collect dead birds in plastic bags, using plastic bags to protect their hands as they do so, and take them to their local veterinary officer.
 

ILRI and WHO agree to work together more closely for better human health

ILRI and WHO sign a memorandum of understanding to promote human health and the control of zoonotic diseases.

In September 2005, a memorandum of understanding was signed between the International Livestock Research Institute (ILRI) and the World Health Organization (WHO). The agreement was signed by executives from both organizations in recognition of the need to better understand the links between livestock keeping and the health and general well-being of poor people in poor countries.

This agreement makes possible more effective collaboration and coordination between ILRI and WHO on human health and the control of diseases transmitted between animals and people (zoonoses) and associated with livestock and livestock products.

The agreement facilitates collective action on issues of concern to both organizations. WHO is involved in the surveillance and response to health problems of its member countries while ILRI obtains evidence on the impact of zoonotic diseases on the health and livelihood of poor people.

“We want to make sure that our research activities are integrated with the surveillance and control needs at the international level. Otherwise, why do research if there is no demand for it?", says Dr. Lee Willingham, a research scientist on parasitic zoonoses at ILRI.

The general objective of this agreement is to maximize synergies in the work of the two organizations in the following areas.

  1. Exchange of information on technical areas of common interest to achieve complementarity and coordination between relevant activities and programmes.
  2. Development of joint activities to address issues of mutual interest that are designed to foster and promote  a greater capacity for research and technology application in developing countries and to facilitate the building and consolidation of global partnerships in the scientific community. The joint projects will be supported through special supplemental project proposals and may involve secondment of staff from one organization to the other or other appropriate administrative arrangements.
  3. Promotion of synergies and elaboration of collaborative programs in areas where the two organizations can best employ their comparative advantages.

Research breakthrough against cattle killer

Innovation, capacity building and partnerships to combat a deadly African cattle disease are in the news. This month, ILRI's East Coast fever research is featured in two top journals – Science and the Journal of International Development. On 1 July 2005, America's leading scientific journal Science reported on the genome sequencing of a deadly parasite, Theileria parva, which causes East Coast fever (ECF), an infectious tick-borne disease that kills two cows every minute in Africa. This ground-breaking research was led by scientists at the International Livestock Research Institute (ILRI) in Nairobi Kenya, and The Institute for Genomic Research (TIGR), based in the USA. In addition to advancing research into parasitic livestock diseases, this research will also be valuable to scientists studying human malaria and cancers. TIGR/ILRI News Release ILRI News Backgrounder The ECF project is also of great interest to international development practitioners and policymakers. An article published in the July edition of the Journal of International Development by James Smith of Edinburgh University uses the ECF project as a case study example of how institutional research and development is changing. The old model 'technology-led' projects, often criticised for failing to deliver effective and affordable products downstream, is being replaced with  new model partnerships that have innovation and capacity building built in and that aim to deliver demand-led products of benefit to the poor in developing countries. Smith describes the ECF project as 'a potentially new model of… research and development partnership' which is an example of “a more ‘complete’ approach to innovation”. The ECF project has many partners and a very clear product focus. The project builds capacity in new ways, as those involved are forced to break out of their traditional boundaries. Scientists who were interviewed felt the project was encouraging them to think in new ways – like farmers and like businesspeople. There are many examples of 'good' technologies still sitting on shelves because scientists failed to consider the needs and circumstances of the end users of the technologies, such as whether the product would be accessible and affordable to farmers. International development professionals and donors are becoming increasingly focused on capacity building, partnerships, innovation systems and, ultimately, the delivery of tangible results, including products, as integral parts of R&D activity. There is a shift away from projects that could be described as 'research for the sake of research' to demand-led research, operated by many partners as a collaborating network that accomplishes a specific goal. John McDermott, ILRI’s Deputy Director General – Research said: 'The ECF Project illustrates ILRI’s new modus operandi, which generates innovation through strategic partnerships. Each partner is doing what they are best at – with the shared goal of delivering an effective and affordable vaccine for East Coast fever that will ultimately benefit millions of small-scale farmers in Africa.' There are lessons to be learned and the ECF project experience looks likely to be scrutinised further to gain more insights into new ways of doing R&D for greater benefits to the world's poor. Smith concludes: 'The East Coast fever vaccine project does appear to offer a new approach to prioritizing research and design, building capacity, and eventually producing an efficacious product. It does appear, however, that the positive spin-offs from the approach may not have been pre-planned but that the approach was shaped by a combination of the contingencies of vaccine production and the realities of institutional R&D in Kenya. The trick will be to identify exactly what makes this approach successful…'.

Biosciences for development

Today the spotlight is on European partners in livestock biosciences for development.
European donors and research institutions working in partnership with ILRI and other CGIAR Centres to speed up agricultural development in poor countries will be highlighted at a breakfast meeting at the 2005 World Bank Sustainable Development European Forum entitled ‘Managing Ecosystems and Social Vulnerabilities in the 21st Century: Towards a More Secure World’, to be held in Paris on 14-15 June 2005. The Forum provides an opportunity to update European bilateral donors on the strategy and work program for the World Bank’s Environmentally & Socially Sustainable Vice Presidency. A significant portion of the agenda is reserved for in-depth, issues-based break-out sessions.

Examples of ILRI projects with European partners are summarized below.

Saving Africa’s unique indigenous cattle breeds critical to its poorest people
In 1998, with funding from Ireland Aid and other European donors, the Africa-based International Livestock Research Institute (ILRI) teamed up with Trinity College, Dublin, to analyse the genetic diversity of indigenous African cattle populations. This project completed molecular diversity datasets from the two centres, unravelled the genetic make-up of African cattle and identified priority cattle breeds for conservation or utilization for the benefit of the farmer communities. The project also helped nations develop strategies for conserving these animals and broadening their use. The project supported evidence that the African continent was a likely center of origin of cattle pastoralism. The latter award-winning research, published in the leading research journal Science, raised awareness of the genetic wealth of Africa’s indigenous cattle populations. African countries are now taking steps to conserve, characterize and make better use of them.

A public-private partnership for technological innovation against a lethal African cattle disease
The East Coast fever vaccine project is an initiative funded by the UK’s Department for International Development (DFID) to design and disseminate a bio-engineered vaccine against a parasite that kills cattle across eastern, central, and southern Africa. A complex set of partnerships between public and private sectors across several continents, including the International Livestock Research Institute (ILRI), in Kenya, the Ludwig Institute for Cancer Research, in Belgium, and the University of Oxford, UK, has played an important role in moving the science forward. The multinational veterinary pharmaceutical company Merial, headquartered in France, is helping to produce the vaccine for trial and will be responsible for the delivery of the vaccine among poor countries. A high degree of complementarity exists between the major partners. ILRI has reached an advanced state of research on the protozoan parasite that causes East Coast fever, bovine immunology and the economic impacts of the disease. Merial produces the vaccine candidates and has been working with Oxford on novel delivery system with potential spin-offs for other human and veterinary vaccines. The project is an example of conceiving and funding a ‘system of innovation’ within the CGIAR, one which cuts across research institutions in new ways, building capacity across the widest possible spread of partners, including NARS.

Conserving a unique genetic resource and way of life among Ankole pastoralists in East Africa
In late 2003, with funding from Austria, scientists from the Africa-based International Livestock Research Institute (ILRI) and the BOKU University of Natural Resources and Applied Life Sciences, in Austria, launched a project to identify indigenous selection criteria and genetic diversity in African longhorn Ankole cattle. The results of this project will improve and sustain the livelihoods of poor Ankole cattle keepers in the four East African countries where these unique cattle are found: Uganda, Burundi, Rwanda and Tanzania. Specifically, the project is facilitating community-based delivery of technical interventions that are genetically improving this breed to meet the needs of their pastoral owners. In the process, the project will help the pastoral communities sustain their environment and culture as well as the genetic diversity of their breed. Indigenous knowledge of animal husbandry and breeding are being captured, as well as selection criteria used by the pastoralists to assess intangible values of their unique Ankole genetic resources.

Development of a second-generation anti-tick vaccine
In late 2004, the Swiss Centre for International Agriculture (ZIL) began funding a project conducted jointly by the Swiss Tropical Institute (Basel), Pevion Biotech (Bern), and the International Livestock Research Institute (ILRI, Nairobi), to develop an anti-tick vaccine to control ticks and tick-borne diseases of tropical cattle. Current tick-control methods rely on regular treatments of animals with acaracides, which kill the ticks. Development of an anti-tick vaccine is one of the most promising alternatives to chemical control, being much safer for the environment and human health. The only commercial vaccine against ticks currently on the market, based on a hidden tick-gut antigenic molecule, requires a series of inoculations to boost the vaccine’s effectiveness. This project is developing a novel antigen-delivery system for use in cattle using virosomes. The aim is to improve the efficiency, handling, user friendliness and cost of the existing vaccine for smallholder farmers. The technology platform developed for the new vaccine may be applied in future against a range of livestock diseases.

Vets without frontiers: Doing it better

VSF-Belgium and ILRI have teamed up in an innovative partnership arrangement that could serve as a super highway between livestock research and development activities in the field. Here the 'implementers' and the 'research & developers' have joined forces to "do it better together" to better serve the poor livestock keeper. VSF-Belgium and ILRI have teamed up in an innovative partnership arrangement that will facilitate communications between livestock farmers, veterinary scientists and vets in the field, and ultimately increase the impact of research. Dr Bruno Minjauw, Operational Project Leader of Innovative Partnerships at ILRI, has been appointed as VSF-Belgium's Regional Director – East Africa. Dr Minjauw will hold a joint position with ILRI and VSFB sharing his time between both organisations. Dr Minjauw said: "I am delighted with this appointment – this is new and exciting territory for all involved. ILRI and VSFB have similar and complementary missions – so this partnership makes sense. We are both trying to do the same thing – and I believe we can do it better together. Ultimately this partnership provides ILRI with a unique asset – a direct door to the voice of the poor." Els Bedert, Programme support for East Africa, of VSFB said: "What really excites us about this partnership with ILRI is that we now have a direct link to the livestock research component. Our (VSF) vets are on the ground working with poor farmers. Having access to scientists with the latest knowledge and resources is going to add considerable value to our role. Essentially, we can act as a link between the farmers and scientists and the scientists and the farmers." The new ILRI-VSF partnership has the potential to identify VSF activities that could benefit from existing information, methodologies and scientific expertise at ILRI, as well as identifying existing ILRI activities where VSF could play a role to increase the impact of research. So what does this mean in practice? Amongst other activities, VSFB is actively involved in a programme which aims to train farmers in basic veterinary skills and provide communities with treatments and vaccinations for their animals through an established decentralised animal health service, whilst also training community animal health workers on how to administer those drugs. VSFB have clear exit strategies built into their programs, so livestock keepers do not become dependent on them. Rather than offering drugs as 'handouts', VSF are making veterinary drugs more readily available for farmers to purchase. One example of the benefits of this new partnership is that VSF vets might identify that a particular technology, which could have a major impact if used by the farmers, is too expensive or in some way inappropriate, therefore farmers will not adopt it. VSFB could then inform ILRI and its partners of the situation and they could then look into ways of improving the technology, either by making it more appropriate or available at a lower cost, or even looking into alternatives, in order to encourage greater uptake by farmers. Similarly, scientists might find that adoption rates of a new technology is low and/or having little impact. VSF vets would be well placed to help establish why this is the case and could then feed back this information to scientists. These are just a couple of opportunities that could be seized to increase the impact on the ground. Vétérinaires Sans Frontières Europa (VSF Europa) is a non-profit international association comprising 8 European VSFs, including VSF-Belgium. Field activities are part of the VSF global programme and their mission is to improve the well-being of vulnerable populations in developing countries, by improving animal health and production. VSFB activities are mainly in three geographical areas in Africa – the Horn of Africa, the Great Lakes region and sub-Saharan countries in West Africa.