Storming the ivory towers: Time for scientists to get out, ‘get social’, to learn better, faster–Nature commentary

Framework for building an evidence base on impacts of social learning

An evaluative framework for assembling an evidence base on the impacts of social learning. Figure 1 in Social learning and sustainable development, article by Patti Kristjanson, Blane Harvey, Marissa Van Epp and Philip Thornton, published in Nature Climate Change 4, 5–7 (2014) (first published online 20 Dec 2013).

Most of us like learning new things. But while learning alone is no fun, it’s hard to convince scientists, who spend their professional lives attempting to learn new things, to adopt ‘social learning’ approaches. These could help bring about new understandings, and help transform such understandings into development benefits, by helping scientists learn with, and from, a diverse group of stakeholders, including non-scientists, holding common purpose.

Those assumptions are held by social learning advocates, who include Patti Kristjanson, an agricultural economist at the World Agroforestry Centre and lead author of a commentary on social learning published in the 20 Dec 2013 online edition of Nature Climate Change. Kristjanson gives a main reason for the reluctance of her agricultural research colleagues to take up social learning. ‘First and foremost’, she says, ‘is the worry of scientists about the large transactions costs of the “many conversations and messy partnerships” such joint learning necessarily entails.’

‘Yet many of the same scientists also worry about the slow pace of agricultural development in many parts of the world’, Kristjanson says.

Those of us attempting to use science to help solve complex agriculturally related development problems—like how to help hundreds of millions of smallholder farmers adapt to harsher, more erratic, climates while producing more food and lifting themselves out of poverty—need to try new approaches. If we keep doing science the way we’ve always been doing it, we’re going to run out of time.’

This Nature Climate Change commentary includes a ‘call to action’.

Kristjanson and her colleagues say it’s time for climate change scientists to step up—to help effect a step change. ‘We need the “social engagement” of many, many more scientists working on climate change adaptation and mitigation strategies. We need them to help us build a solid body of evidence on the benefits—and the costs—of applying social learning approaches.’

The commentary provides a framework that can be used to assess when social learning is likely to be ‘really worth it’ and begins with an introduction, summarized here:

Agricultural research-for-development bodies such as the United Nations Food and Agriculture Organization, CGIAR and their partners are under mounting pressure from their funders to link their research knowledge to actions that achieve faster and more substantive and long-lasting ‘development outcomes’, such as CGIAR’s four ‘system-level outcomes’ of reduced rural poverty, increased food security, better nutrition and health, and sustainable management of natural resources. To bring about the many changes in behaviour, policies and institutions as well as agricultural practices needed to achieve such broad benefits, the authors argue that researchers and their projects need to be continuously informed by, and engaged with, many others, including the individuals and societies they are working to benefit, so as to better understand, and more effectively use, the processes by which people and communities, and policymakers and government officials, learn and adapt their behaviour in the face of climate and other changes and pressures.

Among the many advantages the authors cite of agricultural scientists employing social learning approaches are the following:

  • joint learning and knowledge sharing and co-creation are enhanced among diverse stakeholders around a common purpose
  • the established traditions of participatory development are built on, with learning and collective change placed at the heart of such engagement
  • diverse knowledge and value systems are integrated in ways that help us tackle so-called ‘wicked’ (highly complex) socio-agro-ecological problems

The Nature Climate Change commentary provides a table of examples of agricultural development projects and programs that are already using social learning approaches.

On the face of it, the authors says, social learning approaches should help research-for-development institutions become smarter and more effective. But while iterative learning processes appear to be critical to adapting to environmental and other big changes, it’s difficult to apply ‘learning tools’ in many developing-country situations, they say, where there is high uncertainty and great poverty. ‘And we have as yet little evidence of the impacts of social learning approaches on “hard” development outcomes’, says Kristjanson. Scientists are also concerned, she says, about a lack of demonstrated ability to replicate and scale out the benefits of localized social learning.

The authors of this commentary include Philip Thornton, an agricultural systems analyst and climate change specialist at the International Livestock Research Institute (ILRI). Thornton says that the authors are embarking on a ‘systematic evidence-gathering initiative, using a common evaluative framework to track new initiatives from a range of institutional settings that incorporate social learning approaches’.

‘The practical guidelines we provide’, he says, ‘should help those interested in applying social learning approaches to use the best available knowledge, information and tools to implement and document their initiatives’.

Acknowledgements
Patti Kristjanson and Philip Thornton both lead work of the CGIAR Research Program on Climate Change, Agriculture and Food Security Program (CCAFS), where Kristjanson leads its Linking Knowledge to Action Theme and Thornton its Data & Tools ThemeCCAFS is funded by the CGIAR Fund, AusAid, Danish International Development Agency, Environment Canada, Instituto de Investigação Científica Tropical (Portugal), Irish Aid, Netherlands Ministry of Foreign Affairs, Swiss Agency for Development and Cooperation, UK Aid, and the European Union, with technical support from the International Fund for Agricultural Development.

Read
An authors’ version of this article is available for all to read on Cgspace.

Journal subscribers can read the whole article, Social learning and sustainable development, by Patti Kristjanson, Blane Harvey (International Development Research Centre, Canada), Marissa Van Epp (International Institute for Environment and Development, UK)) and Philip K Thornton, in Nature Climate Change 4, 5–7 (2014) doi:10.1038/nclimate2080 (first published online 20 Dec 2013).

A lively article about this Nature commentary was published by CCAFS yesterday (8 Jan 2014): Want sustainable development? Then it’s time to get social.

CCAFS, ILRI and their many partners invite you to join our efforts to create an evidence base on the impacts of social learning approaches. Leave your comments and ideas in the commentary section below or on the CCAFS website.

This Nature commentary article was produced as part of a continuing social learning process — see their wiki here: Climate Change and Social Learning initiative — in which knowledge is being co-constructed through many different channels. We are grateful and indebted to all who have participated in this process.

As livestock eat, so they emit: Highly variable diets drive highly variable climate change ‘hoofprints’–BIG new study

Cattle being watered at the Ghibe River in southwestern Ethiopia

Cattle being watered in Ethiopia’s Ghibe Valley (photo credit: ILRI/Stevie Mann).

The most detailed livestock analysis to date, published yesterday, shows vast differences in animal diets and emissions.

The resources required to raise livestock and the impacts of farm animals on environments vary dramatically depending on the animal, the type of food it provides, the kind of feed it consumes and where it lives, according to a new study that offers the most detailed portrait to date of ‘livestock ecosystems’ in different parts of the world.

The study, published yesterday (16 Dec 2013) in an early edition of the Proceedings of the National Academy of Sciences (PNAS), is the newest comprehensive assessment assembled of what cows, sheep, pigs, poultry and other farm animals are eating in different parts of the world; how efficiently they convert that feed into milk, eggs and meat; and the amount of greenhouse gases they produce.

The study, produced by scientists at the International Livestock Research Institute (ILRI), the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the International Institute for Applied Systems Analysis (IIASA), shows that animals in many parts of the developing world require far more food to produce a kilo of protein than animals in wealthy countries. It also shows that pork and poultry are being produced far more efficiently than milk and beef, and greenhouse gas emissions that can be tested with Mycotoxin Lateral Flow Rapid Test Strips, vary widely depending on the animal involved and the quality of its diet.

There’s been a lot of research focused on the challenges livestock present at the global level, but if the problems are global, the solutions are almost all local and very situation-specific’, says Mario Herrero, lead author of the study who earlier this year left ILRI to take up the position of chief research scientist at CSIRO in Australia.

‘Our goal is to provide the data needed so that the debate over the role of livestock in our diets and our environments and the search for solutions to the challenges they present can be informed by the vastly different ways people around the world raise animals’, said Herrero. Regardless the type of diet that you are doing you can always take the best fat burning pills to accelerate the process of losing weight.

‘This very important research should provide a new foundation for addressing the sustainable development of livestock in a very resource-challenged and hungry world, where, in many areas, livestock can be crucial to food security’, said Harvard University’s William C. Clark, editorial board member of the Sustainability Science section at PNAS.

For the last four years, Herrero has been working with scientists at ILRI and the lIASA in Austria to deconstruct livestock impacts beyond what they view as broad and incomplete representations of the livestock sector. Their findings—supplemented with 50 illustrative maps and more than 100 pages of additional data—anchor a special edition of PNAS devoted to exploring livestock-related issues and global change. Scientists say the new data fill a critical gap in research on the interactions between livestock and natural resources region by region.

The initial work was funded by ILRI and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

By the numbers

Livestock production and diets
The study breaks down livestock production into nine global regions—the more developed regions of Europe and Russia (1), North America (2) and Oceania (3), along with the developing regions of Southeast Asia (4), Eastern Asia (5, including China), South Asia (6), Latin America and the Caribbean (7), sub-Saharan Africa (8) and the Middle East and North Africa (9).

The data reveal sharp contrasts in overall livestock production and diets. For example:

Of the 59 million tons of beef produced in the world in 2000, the vast majority came from cattle in Latin America, Europe and North America. All of sub-Saharan Africa produced only about 3 million tons of beef.

Highly intensive industrial-scale production accounts for almost all of the poultry and pork produced in Europe, North America and China. In stark contrast, between 40 to 70 per cent of all poultry and pork production in South and Southeast Asia, the Middle East and Africa is produced by small-scale farmers.

Almost all of the 1.3 billion tons of grain consumed by livestock each year are fed to farm animals in Europe, North America, Eastern China and Latin America, with pork and poultry hogging the feed trough. All of the livestock in sub-Saharan Africa combined eat only about 50 million tons of grain each year, relying more on grasses and ‘stovers’, the leaf and stalk residues of crops left in the field after harvest.

Greenhouse gas emissions
Scientists also sought to calculate the amount of greenhouse gases livestock are releasing into the atmosphere and to examine emissions by region, animal type and animal product. They modelled only the emissions linked directly to animals—the gases released through their digestion and manure production.

Some important findings include:
South Asia, Latin America, Europe and sub-Saharan Africa have the highest total regional emissions from livestock. Between the developed and developing worlds, the developing world accounts for the most emissions from livestock, including 75 per cent of emissions from cattle and other ruminants and 56 per cent from poultry and pigs.

The study found that cattle (for beef or dairy) are the biggest source of greenhouse emissions from livestock globally, accounting for 77 per cent of the total. Pork and poultry account for only 10 per cent of emissions.

Analyzing efficiency and intensity
Scientists note that the most important insights and questions emerging from the new data relate to the amount of feed livestock consume to produce a kilo of protein, something known as ‘feed efficiency’, and the amount of greenhouse gases released for every kilo of protein produced, something known as ’emission intensity’.

Meat v. dairy, grazing animals v. poultry and pork
The study shows that ruminant animals (cows, sheep, and goats) require up to five times more feed to produce a kilo of protein in the form of meat than a kilo of protein in the form of milk.

The large differences in efficiencies in the production of different livestock foods warrant considerable attention’, the authors note. ‘Knowing these differences can help us define sustainable and culturally appropriate levels of consumption of milk, meat and eggs.’

The researchers also caution that livestock production in many parts of the developing world must be evaluated in the context of its ‘vital importance for nutritional security and incomes’.

The study confirmed that pigs and poultry (monogastrics) are more efficient at converting feed into protein than are cattle, sheep and goats (ruminants), and it further found that this is the case regardless of the product involved or where the animals are raised. Globally, pork produced 24 kilos of carbon per kilo of edible protein, and poultry produced only 3.7 kilos of carbon per kilo of protein—compared with anywhere from 58 to 1,000 kilos of carbon per kilo of protein from ruminant meat.

The authors caution that the lower emission intensities in the pig and poultry sectors are driven largely by industrial systems, ‘which provide high-quality, balanced concentrate diets for animals of high genetic potential’. But these systems also pose significant public health risks (with the transmission of zoonotic diseases from these animals to people) and environmental risks, notably greenhouse gases produced by the energy and transport services needed for industrial livestock production and the felling of forests to grow crops for animal feed.

Feed quality in the developing world

The study shows that the quality of an animal’s diet makes a major difference in both feed efficiency and emission intensity. In arid regions of sub-Saharan Africa, for example, where the fodder available to grazing animals is of much lower quality than that in many other regions, a cow can consume up to ten times more feed—mainly in the form of rangeland grasses—to produce a kilo of protein than a cow kept in more favourable conditions.

Similarly, cattle scrounging for food in the arid lands of Ethiopia, Somalia and Sudan can, in the worst cases, release the equivalent of 1,000 kilos of carbon for every kilo of protein they produce. By comparison, in many parts of the US and Europe, the emission intensity is around 10 kilos of carbon per kilo of protein. Other areas with moderately high emission intensities include parts of the Amazon, Mongolia, the Andean region and South Asia.

Our data allow us to see more clearly where we can work with livestock keepers to improve animal diets so they can produce more protein with better feed while simultaneously reducing emissions’, said Petr Havlik, a research scholar at IIASA and a co-author of the study.

No absolute indicators of sustainability
While the new data will greatly help to assess the sustainability of different livestock production systems, the authors cautioned against using any single measurement as an absolute indicator of sustainability. For example, the low livestock feed efficiencies and high greenhouse gas emission intensities in sub-Saharan Africa are determined largely by the fact that most animals in this region continue to subsist largely on vegetation inedible by humans, especially by grazing on marginal lands unfit for crop production and the stovers and other residues of plants left on croplands after harvesting.

‘While our measurements may make a certain type of livestock production appear inefficient, that production system may be the most environmentally sustainable, as well as the most equitable way of using that particular land’, said Philip Thornton, another co-author and an ILRI researcher at CCAFS.

That’s why this research is so important. We’re providing a set of detailed, highly location-specific analyses so we can get a fuller picture of how livestock in all these different regions interact with their ecosystems and what the real trade-offs are in changing these livestock production systems in future.’

Read the full paper in the Proceedings of the National Academy of Sciences: Biomass use, production, feed efficiencies and greenhouse gas emissions from global livestock systems, by Mario Herrero (ILRI), Petr Havlík (ILRI and IIASA), Hugo Valin (IIASA), An Notenbaert (ILRI), Mariana Rufino (ILRI), Philip Thornton (ILRI), Michael Blümmel (ILRI), Franz Weiss (IIASA), Delia Grace (ILRI) and Michael Obersteiner (IIASA), in a Special Feature on Livestock and Global Change, early online edition of 16 Dec 2013.

119 pages of supporting online information, including 50 maps, is available at PNAS here.

Read the introduction to this Special Feature on Livestock and Global Change: Livestock and global change: Emerging issues for sustainable food systems, by Mario Herrero and Philip Thornton, in the early online edition of 16 Dec 2013.

About ILRI
The International Livestock Research Institute (ILRI) works with partners worldwide to improve food and nutritional security and to reduce poverty in developing countries through research on efficient, safe and sustainable use of livestock—ensuring better lives through livestock. The products generated by ILRI and its partners help people in developing countries enhance their livestock-dependent livelihoods, health and environments. ILRI is a member of the CGIAR Consortium of 15 research centres working for a food-secure future. ILRI has its headquarters in Nairobi, Kenya, a second principal campus in Addis Ababa, Ethiopia, and other offices in southern and West Africa and South, Southeast and East Asia.

Why tackling partial truths about livestock matters so much: Keynote address at International Grasslands Congress, Part 2


Opening keynote slide presentation by Jimmy Smith, director general of ILRI, at the 22nd International Grasslands Congress, held in Sydney, Australia, 16 September 2013 (credit: ILRI).

This is the second of a two-part article on the opening keynote presentation at the International Grasslands Congress, held in Sydney, Australia from 16 to 19 September 2013, given by Jimmy Smith, director general of the International Livestock Research Institute (ILRI), on Monday 16 September.

Importance of small-scale livestock production: The ‘goods’ and the ‘bads’
‘Livestock are a source of nutrient-dense animal-source foods that can support normal physical and mental development and good health; an income stream that enables the world’s billion poorest people to buy staple foods and other household essentials; and a means of underpinning soil health and fertility and increased yields, thereby enabling more sustainable and profitable crop production’, Smith said in his keynote.

‘But in doing so, if not managed well, livestock production can harm the environment. The sector is a significant source of greenhouse gases, for example, and can be detrimental to human health with the transmission of diseases from livestock to people.’

But there are real opportunities, Smith went on to say, to mitigate such negative impacts now and as livestock systems in the developing world transition in the coming decades.

‘The many goods and services that livestock provide can and must be produced in ways that are less damaging to the environment and pose less risk to public health while also sustaining the livelihoods of hundreds of millions of the world’s poorest citizens, who currently have few options other than livestock farming.’

Feeding the World in 2050: Slide 20

Livestock sector opportunities and trade-offs in a nutshell

Feeding the World in 2050: Slide 21

Feeding the World in 2050: Slide 22

Feeding the World in 2050: Slide 23

Feeding the World in 2050: Slide 24

Feeding the World in 2050: Slide 26

Feeding the World in 2050: Slide 27

Feeding the World in 2050: Slide 28

Feeding the World in 2050: Slide 29

Feeding the World in 2050: Slide 1Feeding the World in 2050: Slide 31

Feeding the World in 2050: Slide 32

Feeding the World in 2050: Slide 33

Feeding the World in 2050: Slide 34

Feeding the World in 2050: Slide 35

Feeding the World in 2050: Slide 36

 

In conclusion
Smith concluded by saying that the developing world’s livestock sector is diverse, changing and growing rapidly. ‘This will pose considerable risks, to the environment and to animal and human health in particular. However, if managed well, it also offers enormous opportunities simultaneously to contribute to global food and nutritional security and poverty reduction in rural areas.’

Read the first part of this article: Keynote address at International Grasslands Congress, Part 1: Why the world’s small-scale livestock farms matter so much, 16 Sep 2013.

About Jimmy Smith

ILRI director general Jimmy Smith on livestock research in Africa

Jimmy Smith, keynote speaker at the Sep 2013 International Grasslands Congress, held in Sydney, Australia, and director general of the International Livestock Research Institute (ILRI) (photo credit: ILRI/Zerihun Sewunet).

Jimmy Smith, a Canadian, is director general of the International Livestock Research Institute (ILRI), a position he assumed on 1 October 2011. Before joining ILRI, he worked for the World Bank, in Washington, DC, where he led the Bank’s Global Livestock Portfolio. Before joining the World Bank, he held senior positions at the Canadian International Development Agency (CIDA). Still earlier in his career, Smith worked at ILRI and its predecessor, the International Livestock Centre for Africa (ILCA), where he served as the institute’s regional representative for West Africa and subsequently managed the ILRI-led Systemwide Livestock Programme of the CGIAR, an association of 10 CGIAR centres working at the crop-livestock interface. Before his decade of work at ILCA/ILRI, Smith held senior positions in the Caribbean Agricultural Research and Development Institute (CARDI). Smith was born in Guyana, in the Caribbean, where he was raised on a small mixed crop-and-livestock farm. He is a graduate of the University of Illinois at Urban-Champaign, USA, where he completed a PhD in animal sciences. He is widely published, with more than 100 publications, including papers in refereed journals, book chapters, policy papers and edited proceedings.

About ILRI
The International Livestock Research Institute (ILRI) works with partners worldwide to enhance the roles that livestock play in food security and poverty alleviation, principally in Africa and Asia. The outcomes of these research partnerships help people in developing countries keep their farm animals alive and productive, increase and sustain their livestock and farm productivity, find profitable markets for their animal products, and reduce the risk of livestock-related diseases. ILRI is a member of the CGIAR Consortium, a global research partnership of 15 centres working with many partners for a food-secure future. ILRI has two main campuses in East Africa and other hubs in East, West and Southern Africa and South, Southeast and East Asia.

About the 22nd International Grasslands Congress
The program and other information about the 22nd International Grasslands Congress, ‘Revitalising grasslands to sustain our communities’, is online here.

Growing more food using fewer natural resources: Pipe dream or the ‘only’ development pathway possible?

Banalata Das, a shrimp farmer feds her cow at the family home. Khulna, Bangladesh. Photo by Mike Lusmore, 2012

 Banalata Das, a dairy and shrimp farmer, feeds her cow in Khulna, Bangladesh (photo credit: WorldFish/Mike Lusmore).

Ramadjita Tabo, a member of The Montpellier Panel and deputy executive director of the Forum for Agricultural Research in Africa (FARA), recently described the recent rather divisive nature of academic discussions on the viability of the ‘sustainable intensification’ of agriculture as follows.

Sustainable intensification, an agricultural development pathway that aims to reconcile food production and environmental protection, is a highly politicised term that divides academics and practitioners alike. Although, when first coined by Jules Pretty, the term was a way of bringing often divergent priorities such as addressing declines in land and agricultural productivity, pollution and food insecurity together under a new paradigm, it has been since accused of being a ruse for big, industrial agriculture. — Ramadjita TaboSustainable intensification: A practical approach to meet Africa’s food and natural resource needs, Global Food Security blog, 18 Apr 2013

Now a team of diverse scientists and other experts, having broadened the concept, make a case in a new report published in the journal Science that sustainable intensification is absolutely central to our ability to meet increasing demands for food from our growing populations and finite farmlands.

Tara Garnett and Charles Godfray, the article’s lead authors, say that we can increase food production from existing farmland if we employ sustainable intensification practices and policies. These, they say, can help minimize already severe pressures on the environment, especially for more land, water, and energy, natural resources now commonly overexploited and used unsustainably.

The authors of this Science ‘Policy Forum’ piece are researchers from leading universities and international organizations as well as policymakers from non-governmental organizations and the United Nations. One of the co-authors is Mario Herrero, an agricultural systems scientist who recently led a ‘livestock futures’ team at the International Livestock Research Institute (ILRI, a member of CGIAR), in Nairobi, Kenya, and who earlier this year moved to Brisbane, Australia, to take up the position of chief research scientist for food systems and the environment at the Commonwealth Scientific and Industrial Research Organisation (CSIRO). Another co-author is Philip Thornton, another ILRI systems scientist and a leader of a multi-institutional team and project in the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

The authors of this Science paper outline a new, more sophisticated account of how ‘sustainable intensification’ should work. They recognize that this policy has attracted criticism in some quarters as being either too narrowly focused on food production or as representing a contradiction in terms.

Why does articulating this new, more refined, account of sustainable intensification matter so much? ‘We often confuse sustainable intensification as synonymous with increases in productivity and resource use efficiency, but the picture is far more complex’, explains Herrero. ‘We attempted a balanced definition, one that encompasses all major perspectives.’ Such a new definition, Herrero says, can be telling. Take the pig and poultry sub-sectors, he says, which are commonly lauded for being more efficient than raising cattle, goats, sheep, water buffalo and other ruminant animals. ‘Well, that can be true. But not in large parts of Europe, for example, which import grain to feed their pigs and poultry, with one result being that Brazilian farmers are chopping down the rain forest to provide that feed to Europe’s livestock farmers. From this perspective, those “efficient” pig and poultry business are just not sustainable. In our endeavour to intensify’, Herrero continues, ‘we can overlook important aspects of agricultural intensification like ecosystems services, biodiversity and human health. Take the livestock sector, for example. With this sector so intimately connected to land management issues and with so many livestock-based livelihoods of poor people at stake, it’s essential that we don’t pay lip service to the ‘sustainability aspects’ of livestock intensification.

We need to  come up with suitable practical indicators of just what is sustainable, and the fact is that we’ll sometimes need to reduce intensification, as in places where additional increases in yields or efficiencies could place too much pressure on other facets of food systems. — Mario Herrero, agricultural systems scientist, CSIRO (formerly of ILRI)

Herrero’s colleague, Philip Thornton, agrees. And he reminds us of the ‘multi-functionality’ of agricultural production systems in developing countries, particularly livestock systems in sub-Saharan Africa. ‘These ‘multifunctions’ (such as keeping cows for household milk, and/or to generate a daily household dairy income, and/or to produce manure to fertilize croplands, and/or to transport produce to markets, and/or or to build household assets) differ by place and context, and our interventions aiming to enhance them need to differ accordingly, Thornton says. No ‘silver bullets’ or ‘one-size-fits-all’ approach, he says, is going to work in these varied smallholder production system contexts.

‘As usual, it’s a matter of scale, with landscape or regional approaches expected to become critical to success. To achieve our desired development outcomes, we’re going to have to “intensify” small-scale livestock, mixed crop-livestock and other agricultural production systems where intensification can be done viably, and we’re going to have to ‘extensify’ these smallholder systems elsewhere in the landscape, where intensification is just not viable.
The main reason for producing this Science paper was to try to wrest the concept of ‘sustainable agricultural intensification’ back from those driving specific agendas. (We may well have to try to do the same for ‘climate-smart agriculture’, but that’s another story.) — Philip Thornton, ILRI and CCAFS

Similar arguments were published in a previous article in Science by Herrero, Thornton and their colleagues (Smart investments in sustainable food production: Revisiting mixed crop-livestock systems, Science, 12 Feb 2010, DOI: 10.1126/science.1183725). This new investigation, Herrero says, is something of a follow-up to that earlier paper. The new Science article stresses that while farmers in many regions of the world need to produce more food, it is equally urgent that policymakers act on diets, waste and how the food system is governed. The authors say we must produce more food on existing rather than new farmland; converting uncultivated land, they say, will lead to greater emissions of greenhouse gases, which are causing global warming, and greater losses of biodiversity.

The authors make a strong case for sustainable intensification being the only policy on the table that could generate ways of producing enough food for all without destroying our environment.

But, warns Charles Godfray, of the Oxford Martin Programme on the Future of Food, sustainable intensification should be only one part of an agricultural and development policy portfolio. ‘Sustainable intensification is necessary’, he says, ‘but not sufficient’.

Achieving a sustainable food system will require changes in agricultural production, changes in diet so people eat less meat and waste less food, and regulatory changes to improve the efficiency and resilience of the food system. Producing more food is important but it is only one of a number of policies that we must pursue together. — Charles Godfray, Oxford Martin Programme on the Future of Food

Increasing productivity does not always mean using more fertilizers and agrochemicals, which frequently carry unacceptable environmental costs, argue the authors. They say that a range of techniques, both old and new, should be employed to develop ways of farming that keep environmental damage to a minimum.

The authors of the paper accept that the intensification of agriculture will directly as well as indirectly impact other important policy goals, such as preserving biodiversity, improving human nutrition and animal welfare, protecting rural economies and sustaining development generally in poor countries and communities. Policymakers will need to find ways to navigate conflicting priorities, they say, which is where research can help.

Lead author Tara Garnett, from the Food Climate Research Network at the Oxford Martin School, says that food security is about more than just more calories. Better nutrition also matters, she says.

Some two billion people worldwide are thought to be deficient in micronutrients. We need to intensify the quality of the food we produce in ways that improve the nutritional value of people’s diets, preferably through diversifying the range of foods produced and available to people but also, in the short term, by improving the nutrient content of crops now commonly produced. — Tara Garnett, Food Climate Research Network

Michael Appleby, of the World Society for the Protection of Animals, says that ‘Attention to livestock welfare is both necessary and beneficial for sustainability. Policies to achieve the right balance between animal and crop production will benefit animals, people and the planet.’

Agriculture is a potent sector for economic growth and rural development in many countries across Africa, Asia and South America, says co-author Sonja Vermeulen, of CCAFS.

Sustainable intensification can provide the best rewards for small-scale farmers and their heritage of natural resources. What policymakers can provide are the strategic finance as well as institutions needed to support sustainable and equitable pathways rather than quick profits gained through depletion. — Sonja Vermeulen, CCAFS

Get the paper: Sustainable intensification in agriculture: Premises and policies, by T Garnett, MC Appleby, A Balmford, IJ Bateman, TG Benton, P Bloomer, B Burlingame, M Dawkins, L Dolan, D Fraser, M Herrero, I Hoffmann, P Smith, PK Thornton, C Toulmin, SJ Vermeulen, HCJ Godfray, Science, vol. 341, 5 Jul 2013.

Note
ILRI director of institutional planning and partnerships, Shirley Tarawali, will be travelling to Accra, Ghana, tomorrow (9 Jul 2013) to take part in a 4-day workshop (10–13 Jul 2013) for major stakeholders in sustainable agricultural intensification in Africa. The participants will explore the links between systems research and sustainable intensification to refine and reach a common understandings.

The workshop also aims to help determine:
1) factors critical for successful sustainable intensification
2) institutional arrangements for integrating sustainable intensification into investment and service delivery programs
3)  best mechanisms for sharing and learning across Africa’s major sustainable intensification programs.

About 50 people will participate in this sustainable intensification workshop, representing the Forum for Agricultural Research in Africa (FARA); Africa’s sub-regional and non-governmental organizations, national agricultural research systems, universities and farmer organizations; CGIAR centres and research programs; and major African sustainable intensification programs, financing organizations and investors.

More information
Contact the University of Oxford Press Office on +44 (0)1865 280534 or email press.office@admin.ox.ac.uk
Contact taragarnett [at] fcrn.org.uk or charles.godfray [at] zoo.ox.ac.uk
Contact Shirley Tarawali: s.tarawali [at] cgiar.org

The Science article follows a workshop on food security convened by the Oxford Martin School and the Food Climate Research Network at the University of Oxford; a more detailed account of the workshop is at: http://www.futureoffood.ox.ac.uk/sustainable-intensification

Tara Garnett runs the Food Climate Research Network: http://www.fcrn.org.uk
Charles Godfray is the Director of the Oxford Martin Programme on the Future of Food: http://www.futureoffood.ox.ac.uk
For more information on the Oxford Martin School, please visit http://www.oxfordmartin.ox.ac.uk/
Michael Appleby is chief scientific adviser for humane sustainable agriculture at the World Society for Protection of Animals: www.wspa.org.uk
Sonja Vermeulen is head of research at the CGIAR Research Program on Climate Change, Agriculture and Food Security: http://ccafs.cgiar.org

Addendum
Simon West, a PhD student within a GLEAN project and working at the Stockholm Resilience Centre, has an interesting point to make about the importance of ‘learning’ at the interface of ecosystem management and sustainable development (One thought on GLEAN @ STEPS summer school, 30 May 2013).

‘. . . My research examines the production of learning within ecosystem management, and how such learning – informed by mental models, narratives and framing of ecological change – affects the way that people interact with their environment. Learning is increasingly recognized as critical in achieving transitions toward sustainable development – but how does such learning take place, and what types of learning are required? Scholars from different disciplinary backgrounds will answer these questions in very different ways, and such differences reveal the contestation at the heart of any idea of sustainable development. . . .

‘Even in open and inclusive participatory processes decisions have to be made which inherently require closing down around particular courses of action; the success of one narrative (even if the narrative was previously marginalized) will inevitably come at the expense of others. Not everyone in a participatory process can necessarily ‘win.’ . . .

‘[T]oo much emphasis (by any discipline looking at sustainability issues) on developing any kind of “general content” of learning for sustainability is likely to be misguided. . . . I would argue that a more productive goal would be to encourage a new structure to knowledge, moving towards an ability to think in terms of complexity, multiple variables, interaction of social and ecological factors and temporal and spatial variability, in order to facilitate understanding of the adaptive and dynamic relations between values, framings and narratives, and the material environment.

‘Most importantly, this may lead to the realization that others in all contexts . . . will have wildly different, but equally legitimate, understandings of reality and what really matters – and this is perhaps the hardest concept for all of us, not least scientists, to really grasp.’

Climate change–Wholesale reconfiguration of diets, livelihoods, farming will be required in some regions

Field photos from Lower Nyando, Kenya

A new report identifies ‘regret-free’ approaches for adapting agriculture to climate change. Amid fears of wasted investments and imprecise science, researchers are providing clarity on actions small-scale food producers and their governments can take now. Gala goats, pictured above, for example, are an improved breed being acquired by farmers in Kenya’s Lower Nyando region to help them cope with climate change: The goats mature early, are easy to manage and produce high levels of milk (photo credit: K Trautmann).

Findings from a new report from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) chart a path for farmers to adapt to climate shifts despite uncertainties about what growing conditions will look like decades from now.

As this week’s UN climate talks in Bonn continue to sideline a formal deal on agriculture, the study, ‘Addressing uncertainty in adaptation planning for agriculture’, which was published recently in the Proceedings of the National Academies of Sciences (PNAS), finds that the cloudy aspects of climate forecasts are no excuse for a paralysis in agriculture adaptation policies.

Climate projections will always have a degree of uncertainty, but we need to stop using uncertainty as a rationale for inaction’, said Sonja Vermeulen, head of research at CCAFS and the lead author of the study.

‘Even when our knowledge is incomplete, we often have robust grounds for choosing best-bet adaptation actions and pathways, by building pragmatically on current capacities in agriculture and environmental management, and using projections to add detail and to test promising options against a range of scenarios.’

The CCAFS analysis shows how decision-makers can sift through the different gradients of scientific uncertainty to understand where there is, in fact, a general degree of consensus and then move to take action. Moreover, it encourages a broader approach to agriculture adaptation that looks beyond climate models to consider the socioeconomic conditions on the ground. These conditions, such as a particular farmer’s or community’s capacity to make the necessary farming changes, will determine whether a particular adaptation strategy is likely to succeed.

Getting farmers, communities, governments, donors and other stakeholders to embrace various adaptation strategies can end up being equally or more important than seeking higher levels of scientific certainty from a climate model’, said Andy Challinor, a professor at the Institute for Climate and Atmosphere Science, School of Earth and Environment at the University of Leeds, who co-leads research on climate adaptation at CCAFS and was also an author of the study.

‘There is no question that climate science is constantly improving’, he added. ‘But scientists also need to understand the broader processes involved in agriculture adaptation and consider how we can better communicate what we do know in ways that are relevant to a diverse audience.’

The CCAFS study uses examples from the program’s recent work in the developing world to illustrate how some countries have pursued climate change adaptation strategies that will that help them prepare for shifts in growing conditions in the near-term and long-term.

Some of the strategies involve relatively straightforward efforts to accommodate changes in the near-term that will present growing conditions that are not significantly different from what farmers have experienced in the past.

The authors also explore how in some parts of the world adaptation planning must consider long-term changes that exceed historical experience and require ‘wholesale reconfigurations of livelihoods, diets, and the geography of farming and food systems’.

As short-term and long-range agriculture forecasts reveal disturbing trends, especially in developing countries, many decision-makers acknowledge the critical importance of moving forward with climate adaptation.

For example, in Kenya, rain-fed agriculture contributes more than one-quarter of the GDP. Recent droughts have left millions without access to adequate food and slowed the nation’s economic growth by an annual average of 2.8 per cent between 2008 and 2011. In March 2013, after an extensive consultation process engaged most sectors of society, Kenya formally launched its national climate change action plan.

In Kenya, as well as in many countries in Africa and elsewhere in the developing world, climate change is a critical policy priority’, said James Kinyangi, of the International Livestock Research Institute (ILRI) and a regional program leader for CCAFS in East Africa. ‘It is imperative for developing nations to embrace the adaptation planning process and for industrialized countries to unlock much-needed funding support so that this planning fast tracks climate adaptation actions.’

‘Some farmers and countries are going to need to make big transitions in what food they produce’, concluded Vermeulen. ‘Science is now reaching a point where it will be able to provide advice on when—not just whether—major climatic shifts relevant to agriculture will happen. Helping governments and farmers plan ahead will make all the difference in avoiding the food insecurity and suffering that climate change threatens.’

About CCAFS
The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) is a strategic partnership of CGIAR and Future Earth, led by the International Center for Tropical Agriculture (CIAT). The International Livestock Research Institute (ILRI) partners CCAFS in its work. Two of the authors of this study, Philip Thornton and James Kinyangi, are ILRI scientists.

Read the journal article
Addressing uncertainty in adaptation planning for agriculture, by Sonja Vermeulen, Andrew Challinor, Philip Thornton, Bruce Campbell, Nishadi Eriyagama, Joost Vervoort, James Kinyangi, Andy Jarvis, Peter Läderach, Julian Ramirez-Villegas, Kathryn Nicklin, Ed Hawkins and Daniel Smith. 2013. Proceedings of the National Academy of Sciences (PNAS) vol. 110 no. 21. http://dx.doi.org/10.1073/pnas.1219441110

 

Livestock, climate and poverty: A short history of work begun to unravel the complexity, and set useful priorities

RTB East Africa1-94

Farming in eastern Africa (photo on Flickr by CIAT/Neil Palmer).

The story of human settlement and human evolution is very much tied to the fact that the earth’s climate has always been changing, and will continue to do so.

So begins a new brief developed by agricultural systems and climate change scientist Philip Thornton and his colleagues at the International Livestock Research Institute (ILRI), based in Nairobi, Kenya.

The brief goes on to say the following.

What is known about the likely impacts of climate change on resource-poor livestock keepers in the developing world? Relatively little, and the International Livestock Research Institute (ILRI) and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) are working to improve this knowledge.

‘This Brief outlines how a group of scientists at ILRI reviewed some elements of the complex relationship between livestock and climate change in developing countries with a forward-looking approach. The objective was to help set research priorities: to inform the debate as to what research for development organizations such as ILRI could and should be doing in the area of climate change work that could add value to the large amounts of work already being carried out by the Global Change community on cropping systems and natural resources management. . . .

Resource-poor livestock keepers: Mitigate and adapt
‘Changes in climate and climate variability will affect livestock production systems in all parts of the world, and will inevitably impact the 1.3 billion poor people whose livelihoods are wholly or partially dependent on livestock. At the same time, livestock production is a major contributor to greenhouse gas emissions.

Therefore, livestock keepers will have to mitigate emissions as well as adapt to change.

‘The adaptation and mitigation that are necessary may require significant changes in production technology and livestock production systems, which could affect productivity, incomes and livelihoods. Livestock production systems are highly heterogeneous, however, and different production systems have different capacities to adapt or to take on board the policy and regulatory changes that may be required in the future.

‘In developed countries, livestock systems are generally adaptable and resilient. In developing countries, in contrast, households that are dependent on livestock keeping may be much more vulnerable to changes in climate and climate variability, with the potential for increased poverty and decreased food security. At the same time, there may be considerable growth potential in the smallholder livestock sector, given projected increases in demand for livestock products globally and for biofuels and the land-use changes these may bring about. . . .

‘No formal evaluation has been undertaken, but this work certainly had some impact in addressing the lack of information on livestock in several integrated global assessments, despite livestock’s being recognized as one of the major drivers of global change. New partnerships have been forged with others working in the realm of global assessment. . . .

Way forward
‘[T]here is a need for improvement in the kind of indicators that are produced to gauge changes in social factors. Currently, impacts are usually expressed in terms of available calories and prices, for example, but there may be many other critical factors to assess future changes beyond food availability and commodity prices. Second . . . [is] the need to undertake priority-setting analyses on a regular basis, linked with other types of foresight and scenario processes . . . [and] explicitly linking priority setting with monitoring and evaluation, to provide more coordinated planning and implementation of research for development to improve its influence and to better demonstrate its value to the resource-poor of the developing world.’

Read the whole brief: Climate change: Do we know how it will affect smallholder livestock farmers? by Philip Thornton, Jeannette van de Steeg, An Notenbaert and Mario Herrero, a GFAR ‘The Futures of Agriculture’ Brief No. 43, May 2013.

This brief is based on two publications by ILRI scientists:
(1) Thornton P K, Notenbaert A, van de Steeg J and Herrero M, 2008, The livestock-climate-poverty nexus: A discussion paper on ILRI research in relation to climate change, published by ILRI, Nairobi, Kenya, 80 pp.

(2) Thornton P K, van de Steeg J, Notenbaert A and Herrero M, 2009. The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know, Agricultural Systems 101: 113–127.

Note
This brief series was developed in preparation for the Foresight Breakout Session of the Global Conference on Agricultural Research for Development (GCARD 2012) and the Global Foresight Hub. The briefs were written to communicate to a wider audience, such as policy makers, civil society organizations, researchers, and funders.

Agricultural research, climate change and ‘social learning’: How did we get here?

'Southern Gardens' by Paul Klee, 1921 (via WikiPaintings)

‘Southern Gardens’ by Paul Klee, 1921 (via WikiPaintings).

An ongoing CGIAR group meeting in Bodega Bay, California, (18–19 Mar 2013) is looking at untapped potential in CGIAR and beyond for actors of diverse kinds to join forces in improving global food security in the light of climate change. Updates from the event are being shared on the CCAFS website and on Twitter (follow #2013CCSL). For more information, go to CCAFS 2013 Science Meeting programmeMore information about the meeting is here.

The following opinion piece was drafted by Patti Kristjanson, of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and based at the World Agroforestry Centre (ICRAF), in Nairobi, Kenya, with inputs from other ‘climate change and social media champions’, including Sophie Alverez (International Center for Tropical Agriculture [CIAT]), Liz Carlile (International Institute for Environment and Development [IIED]), Pete Cranston (Euforic Services), Boru Douthwaite (WorldFish), Wiebke Foerch (CCAFS), Blane Harvey (International Development Research Centre [IDRC]), Carl Jackson (Westhill Knowledge Group), Ewen Le Borgne (International Livestock Research Institute [ILRI]), Susan MacMillan (ILRI), Philip Thornton (CCAFS/ILRI) and Jacob van Etten (Bioversity International). (Go here for a list of those participating at the CCAFS Annual Science Meeting in California).

Untapped potential
All humans possess the fundamental capacity to anticipate and adapt to change. And of course experts argue that it is change — whether the end of the last Ice Age or the rise of cities or the drying of a once-green Sahel — that has driven our evolution as a species. If we’ve progressed, they say, it’s because we had to. And we can see in the modern world that, with supportive and encouraging environments, both individuals and communities can be highly resourceful and innovative, serving as agents of transformation. The agricultural, industrial and information revolutions were the products of both individual inventiveness (think of Steve Jobs) and social support (Silicon Valley).

Some of the major changes today are occurring fastest in some of the world’s slowest economies. The two billion or so people in the world’s developing countries who grow and sell food for a living, for example, are adjusting to huge changes — to their countries’ exploding populations and diminishing natural resources, to a rural exodus and rush to the cities, to higher food prices, to new lethal diseases, to a single global economy, and, on top of all of that, to a changing climate causing unpredictable seasons and more extreme and frequent ‘big weather’ in the form of droughts, floods and storms.

PETE CRANSTON
The problems generated by climate change requires larger scale, collaborative responses — that is, social learning, requiring collaborative reflection and learning, at scale, and engaging community decision-making processes. 
Collective action, at scale, to systemic problems caused by climate change is the area of interest that came out of a workshop on climate change and social learning held in May 2012.

[The workshop Cranston refers to, held on ILRI’s campus in Addis Ababa, Ethiopia, was organized by CCAFS; go here for more information.]

When it comes to the food systems that support all of us, that enable human life itself, we’re squandering our innate potential to innovate. What will it take to unleash the potential within all of us — consumers and farmers and farm suppliers, food sellers and agri-business players, agricultural scientists, policymakers, thought leaders, government officials, development experts, humanitarian agents — to make the changes we need to make to feed the world? And what will it take to do so in ways that don’t destroy the natural resource base on which agriculture depends? In ways that don’t leave a legacy of ruined landscapes for our children and children’s children to inherit?

PATTI KRISTJANSON
You don’t hear much about what can be done about it. We need to see major changes in how food is grown and distributed. In Africa and Asia, where millions of families live on one to five hectares of land, we need to see improved farming systems. We  need to see transformative changes, not small changes. But to transform food systems, we also need to transform how the research that supports these transformations is done. We need to think more about partnerships. And learning.

Remembrance of a Garden, by Paul Klee, 1914 (via WikiPaintings)

‘Remembrance of a Garden’ by Paul Klee, 1914 (via WikiPaintings).

How did we get here?
Before attempting to answer those questions, it might profit us to take a look at how agricultural development got to where it is now. Alain de Janvry, a professor of agricultural and resource economics at the University of California at Berkeley, and others argue as follows.

For decades, development agencies put agriculture at the forefront of their priorities, believing it to be the precursor to industrialization. Then, starting in the 1970s and early 1980s, the bias for agriculture began to be seriously eroded, with huge economic, social, and environmental costs.

The good news, de Janvry says, is that ‘In recent years, a number of economic, social, and environmental crises have attracted renewed attention to agriculture as both a contributor to these problems and a potential instrument for solutions. . . . A new paradigm has started to emerge where agriculture is seen as having the capacity to help achieve several of the major dimensions of development, most particularly accelerating GDP growth at early stages of development, reducing poverty and vulnerability, narrowing rural-urban income disparities, releasing scarce resources such as water and land for use by other sectors, and delivering a multiplicity of environmental services.’

The bad news, he says, is that ‘renewed use of agriculture for development remains highly incomplete, falling short of political statements.’

Let’s now return to our questions about what’s missing in agricultural development today, and what that has to do with ‘social learning’, or lack of it.

Apparatus for the Magnetic Treatment of Plants, by Paul Klee, 1908 (via WikiPaintings)

‘Apparatus for the Magnetic Treatment of Plants’ by Paul Klee, 1908 (via WikiPaintings).

Unlocking the human potential for innovating solutions
Agricultural scientists are important actors both in instigating change and in helping people anticipate and adapt to climate and other agriculturally important changes. They have played a key role so far in spearheading major agricultural movements such as the Green Revolution in Asia. Yet one billion poor people have been left behind by the Green Revolution, largely because they live in highly diverse agro-ecological regions that are relatively inaccessible and where they cannot access the research-based information, technologies and support they need to improve, or ‘intensify’, their farming systems.

The complex agriculturally related challenges of today require going way beyond ‘business as usual’. And they offer agricultural scientists unprecedented opportunities to play major roles in some of the major issues of our time, including reducing our greenhouse gas emissions and adapting to climate change. But we’re not going to make good use of these opportunities if we don’t recognize and jump on opportunities for joint societal learning and actions.

POTATOES IN THE ANDES
Take this example from Latin America, where agricultural researchers set about documenting the biodiversity of potato varieties in the high-elevation Andes. An unanticipated consequence of this activity was learning from local farmers about numerous varieties previously unknown to science. And the scientists realized that traditional knowledge of these hardy varieties and other adaptive mechanisms are helping many households deal with climate variability at very high elevations. Further learning in this project showed that women and the elderly tended to have much better knowledge of traditional varieties and their use than the owners of the land. This kind of knowledge is now being shared widely in an innovative Andean regional network.

RICE IN VIETNAM
Here’s another example. Rice is now being grown by over a million farmers in Vietnam using a new management system that reduces water use and methane gas emissions while generating higher incomes for farm families. This happened through farmers — both men and women — experimenting and sharing experiences in ‘farmer field schools’ that had strong government support. It turns out that the women farmers are better trainers than men. After participating in a farmer field school, each woman helped 5–8 other farmers adopt the new approach, while every male participant helped only 1–3 additional farmers. So making sure women were a key part of this effort led to much greater success in reducing poverty and environmental damage.

Ravaged Land, by Paul Klee, 1921, Galarie Beyeler (via WikiPaintings)

‘Ravaged Land’ by Paul Klee, 1921, Galarie Beyeler (via WikiPaintings).

New opportunities for doing research differently
Back to de Janvry for a moment. ‘Crises and opportunities’, he says, ‘combine in putting agriculture back on the development agenda, as both a need and a possibility. This second chance in using agriculture for development calls for a new paradigm, which is still largely to be consistently formulated and massively implemented. . . [A] Green Revolution for Sub-Saharan Africa is still hardly in the making.’

ALAIN DE JANVRY
In the new paradigm, process thus matters along with product if the multiple dimensions of development are to be achieved. . . . As opposed to what is often said in activist donor circles, it is a serious mistake to believe that we know what should be done, and all that is left to do is doing it. . . . Because objectives and contexts are novel, we are entering un-chartered territory that needs to be researched and experimented with. Extraordinary new opportunities exist to successfully invest in agriculture for development, but they must be carefully identified. . . . Innovation, experimentation, evaluation, and learning must thus be central to devising new approaches to the use agriculture for development. This requires putting into place strategies to identify impacts as we proceed with new options.

The biggest mistake one could make about using agriculture for development is believe that it is easy to do and that we already know all we need to do it. It is not and we don’t. . . . Lessons must be derived from past mistakes, and new approaches devised and evaluated.

So how do we derive lessons from past mistakes? How do we devise new approaches and evaluate them on-goingly?

LIVESTOCK IN EAST AFRICA
One way is to take a proactive social learning approach — learning together through action and reflection, which leads to changes in behaviour. Researchers from ILRI, for example, learned by interacting closely with pastoral groups in East Africa that intermittent engagement is not as powerful a force of social change as is continual engagement, which they achieved by instituting ‘community facilitators-cum-researchers’. This led to transformative changes in land policy and management, with long-lasting benefits for wildlife populations, pastoral communities and rangelands alike.

Public-private partnerships that include researchers can also help. Through active learning together we can reach more people, more efficiently and effectively than before — this approach is further supported through widespread access to the internet and smartphones that allow greater engagement from communities and individuals spread far and wide. We can map the soils and water resources needed to grow food, and try new ‘crowdsourced’ approaches to identify needs for different types of seeds and seedlings. We can democratize research, and make scientists much more responsive to the needs of different groups of people.

Rising Sun, by Paul Klee, 1907 (via WikiPaintings)

‘Rising Sun’ by Paul Klee, 1907 (via WikiPaintings).

Why bother?
What’s the incentive for researchers to do things differently? For all of us, it lies in the opportunity to sharpen our edge, to become better solvers of bigger, more complex problems, or at least to ask better questions about ‘wicked problems’. For scientists in particular, the opportunity to make our research, including fundamental and lab-based research, more relevant and targeted to meeting demand — user-inspired rather than supply-driven research — is tremendous.

RICE IN AFRICA
When researchers at two international rice research institutes, IRRI and AfricaRice, started to include women in participatory varietal selection, different preferences emerged. Women focused more on food security than yields. Through working directly with women as well as men, the nature of research challenges and questions changed to accommodate different needs, values and norms. The use of farmer-to-farmer learning videos accelerated the transfer of different types of learning. Evaluations show that this approach has led to an 80% greater adoption rate of different technologies and practices than previous dissemination techniques.

In these ways, socially differentiated and participatory research approaches hold the promise of making our research more central to the major agricultural problems we’re facing — and to anticipate future problems, issues and questions by sharpening our critical questioning through ongoing learning.

Reconstructing by Paul Klee, 1926 (via WikiPaintings)

‘Reconstructing’ by Paul Klee, 1926 (via WikiPaintings).

How do we learn and make this happen?
We learn by using, by doing, by trying, by failing, by modeling, through engagement, dialogue and reflection. Knowledge links to action more effectively when the users are involved from the problem definition stage onwards, when they ‘co-own’ the problem and questions that could lead to solving it. So a shift towards joint observation, trials, modeling and experimentation is key. CGIAR and its partners have used learning approaches to catalyze transformative change in the ways in which food is grown, distributed and consumed.

LEARNING ALLIANCES IN LATIN AMERICA
CIAT has been taking a ‘learning alliance’ approach, partnering with intermediaries such as the Sustainable Food Lab, global food and commodity corporations, local farmer associations and international development-oriented non-governmental organizations. Innovative networks have been formed that link local producers (rural poor) with global buyers. Executives from global food companies have gone on learning journeys where they hear first-hand from small farmers about 3-month periods of food insecurity; they responded by supplying alternate seed varieties for food security over this period. Global companies have reoriented their buying patterns to accommodate local producer needs. These new alliances are generating longer-term networks that are building the adaptive capacity of both food sellers and producers.

Refuge by Paul Klee, 1930 (via WikiPaintings)

‘Refuge’ by Paul Klee, 1930 (via WikiPaintings).

What are we asking people to do?
We want to see more people embracing the idea of joint, transformative learning, the co-creation of knowledge. This is not a new idea. But the imperatives we’re facing now demand a more conscious articulation, promotion and facilitation of this approach by a wide range of people, especially scientists from all disciplines. More relevant science leads to social credibility and legitimacy, which in turn should lead to the ability to mobilize support — a win-win for researchers.

PATTI KRISTJANSON
To enable social learning, incentives and institutions — the rules of the game — have to change also. This includes our changing how research is planned, evaluated and funded. We need much longer time horizons than those currently in play (with 2–3 year projects the norm). And we need to share this critical lesson with governments and other investors in agricultural research for development.

Our vision of success includes many more scientists engaged in broad partnerships; producing more relevant, useful and used information; doing less paperwork and more mentoring of young people and more interactive science; and more generously sharing their knowledge. This helps us to see — much more clearly than before — our scientific contributions to improved agricultural landscapes, sustainable food systems, profitable and productive livelihoods, and improved food security globally.

EWEN LE BORGNE
For more on social learning, consult these ‘social learning gurus’ cited by Ewen Le Borgne:
•  Mark Reed, author of the definition that a few of us have been quoting — see his What is social learning? response to a paper published in Ecology and Society in 2010.
•  Harold Jarche or Jane Hart, both write well on social learning in an enterprise — see Social Learning Centre website and Jarche’s blog.
•  Sebastiao Ferreira Mendonca — see the Mundus maris website (Sciences and Arts for Sustainability International Initiative)
•  Valerie BrownAustralian academic who worked a lot on multiple knowledges in IKM-Emergent, a five-year research program in ’emergent issues in information and knowledge management and international development’ (blog here)

For more information:
Go to CCAFS 2013 Science Meeting programme. Updates from the event are being shared on the CCAFS website and on Twitter (follow #2013CCSL).

For more on this week’s meeting, see these earlier posts on the ILRI News Blog:
The world’s ‘wicked problems’ need wickedly good solutions: Social learning could speed their spread, 18 May 2013.
Climate change and agricultural experts gather in California this week to search for the holy grail of global food security, 17 Mar 2013.

And on the CCAFS Blog:
Farmers and scientists: better together in the fight against climate change, 19 Mar 2013.
Transformative partnerships for a food-secure world, 19 Mar 2013.

Read Alain de Janvry’s whole paper: Agriculture for development: New paradigm and options for success, International Association of Agricultural Economists, 2010.

For more on the use of ‘social learning’ and related methods by the CCAFS, see the CCSL wiki and these posts on ILRI’s maarifa blog.

Pastoral livestock development in the Horn: Where the centre cannot (should not) hold

Pastoralism and Development in Africa

Who eats better, pastoral children in mobile herding or settled communities? (answer: mobile). Which kind of tropical lands are among those most at risk of being grabbed by outsiders for development? (rangelands). Are pastoral women benefitting at all from recent changes in pastoral livelihoods? (yes). Which region in the world has the largest concentration of camel herds in the the world? (Horn of Africa). Where are camel export opportunities the greatest? (Kenya/Ethiopa borderlands). Is the growth of ‘town camels and milk villages’ in the Somali region of Ethiopia largely the result of one man’s (desperate) innovation? (yes). Which is the more productive dryland livestock system, ranching or pastoralism? (pastoralism). Is irrigation involving pastoralists new? (no). Are we missing opportunities to make irrigated agriculture a valuable alternative or additional livelihoods to pastoralism? (perhaps).

The answers to these and other fascinating questions most of us will never have thought to even ask are found in a new book, Pastoralism and Development in Africa: Dynamic Change at the Margins, edited by Andy Catley, of the Feinstein International Center, at Tufts University; Jeremy Lind, of the Institute of Development Studies at the University of Sussex and Future Agricultures Consortium; and Ian Scoones, of the Institute of Development Studies, the STEPS Centre and the Future Agricultures Consortium. Published in 2012, it includes a chapter by scientists at the International Livestock Research Institute (ILRI): Climate change in sub-Saharan Africa: What consequences for pastoralism?

Thirty-six experts in pastoral development update us on what’s so in pastoral development in the Greater Horn of Africa, highlighting innovation and entrepreneurialism, cooperation and networking and diverse approaches rarely in line with standard development prescriptions. The book highlights diverse pathways of development, going beyond the standard ‘aid’ and ‘disaster’ narratives. The book’s editors argue that ‘by making the margins the centre of our thinking, a different view of future pathways emerges’. Contributions to the book were originally presented at an international conference on The Future of Pastoralism in Africa, held at ILRI’s campus in Addis Ababa, Ethiopia, in Mar 2011.

Here are a few of the book’s ‘unstandard’ ways of looking at pastoralism.

‘Overall, mainstream pastoral development is a litany of failure. . . . Pastoral borderlands are . . . beyond the reach of the state, and so the development industry.  ·  Perhaps no other livelihood system has suffered more from biased language and narratives than pastoralism. . . . Hidden in these narratives also are political agendas that perceive mobile pastoralism as a security and political threat to the state, and, therefore, in need of controlling or eliminating.  ·  To avoid the Malthusian label, or simply out of ignorance, many social scientists have neglected the important implications of demographic trends in pastoral areas. . . . Some of the fastest growing towns in Kenya are in pastoralist districts.  ·  Local demand for education is consistently high among pastoralists, a pattern that was not the case even 10–15 years ago.  ·   It seems feasible . . . to propose a pastoral livestock and meat trade value approaching US$1 billion for the Horn in 2010.  ·  The past dominant livestock practice characterized as traditional mobile pastoralism” is increasingly rare. . . . The creation of a relatively elite commercial class within pastoral societies is occurring at a rapid pace in some areas.  ·  . . . [P]astoral lands are vulnerable to being grabbed. On a scale never before envisioned, the most valued pastoral lands are being acquired through state allocation or purchase . . . . The Tana Delta sits at the precipice of an unprecedented transformation as a range of investors seek to acquire large tracts of land to produce food and biofuels and extract minerals, often at the expense of pastoralists’ access to key resources. . . . A notable facet of changing livelihoods in the Tana Delta is the increasingly important role of women in the diversifying economy, a trend seen elsewhere in the region. . . . Until now, pastoralists have been mostly unsuccessful at challenging proposed land deals through the Kenyan courts.  ·  The shift from a breeding herd to a trading herd is perhaps the biggest shift in Maasai pastoralism.  ·  Although drought is a perennial risk to pastoralist livelihoods, an emerging concern is securing access to high value fodder and other resources to support herds, in areas where rangelands are becoming increasingly fragmented due to capture of key resource sites.  ·  During the 2009–2011 drought in the Horn of Africa, several hundred pastoralists who participated in an Index-Based Livestock Insurance (IBLI) scheme in northern Kenya received cash payments.  ·  Despite its many challenges, mobile pastoralism will continue in low-rainfall rangelands throughout the Horn for the simple reason that a more viable, alternative land use system for these areas has not been found. . . . But the nature of pastoralism in 2030 will be very different than today in 2012. . . .’

One of the book’s chapters is on Climate change in sub-Saharan Africa: What consequences for pastoralism? It was written by ILRI’s Polly Ericksen (USA), whose broad expertise includes food systems, ecosystem services and adaptations to climate change by poor agricultural and pastoral societies; and her ILRI colleagues Jan de Leeuw (Netherlands), an ecologist specializing in rangelands (who has since moved to ILRI’s sister Nairobi CGIAR centre, the World Agroforestry Centre); Mohammed Said (Kenyan), an ecologist specializing in remote sensing and community mapping; Philip Thornton (UK) and Mario Herrero (Costa Rica), agricultural systems analysts who focus on the impacts of climate and other changes on the world’s poor countries and communities; and An Notenbaert (Belgium), a land use planner and spatial analyst.

The ILRI scientists argue that if we’re going to find ways to adapt to climate change, we’re going to need to learn from pastoralists — who, after all, are demonstrably supreme managers of highly variable climates in addition to rapidly changing social, economic and political contexts — about how to make sustainable and profitable, if cyclical and opportunistic, use of increasingly scarce, temporally erratic and spatially scattered water, land, forage and other natural resources.

In important respects, pastoral people are at the forefront of responses to climate change, given their experience managing high climate variability over the centuries. Insights from pastoral systems are critical for generating wider lessons for climate adaptation responses.’

What scientists don’t know about climate change in these and other drylands, they warn, is much, much greater than what we do know. So:

The key question is how to make choices today given uncertainties of the future.’

Because ‘the more arid a pastoral environment, the less predictable the rainfall’, and because ‘vegetation growth closely follows rainfall amount, frequency and duration, . . . the primary production of rangelands is variable in time and space’, with the primary driver of this variability in livestock production in pastoral areas being the availability or scarcity of forages for feeding herds of ruminant animals (e.g., cattle, sheep, goats, camels). In severe or prolonged droughts, forage and water scarcity become a lethal combination, killing animals en masse. The authors quote former ILRI scientist David Ndedianye, a Maasai from the Kitengela rangelands in Nairobi’s backyard, and other ILRI colleagues who report in a 2011 paper on pastoral mobility that pastoral livestock losses in a 2005 drought in the Horn were between 14 and 43% in southern Kenya and as high as 80% in a drought devastating the same region in 2009. It may take four or five years for a herd to recover after a major drought.

Map of flip in temperatures above and below 30 degrees C
Maps of a flip in temperatures above 30 degrees C. Left: Threshold 4 — maximum temperature flips to greater than 30°C. Right: Threshold 5 — maximum temperature in the growing season flips to greater than 30°C. Map credit: Polly Ericksen et al., Mapping hotspots of climate change and food insecurity in the global tropics, CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), 2011.

Evidence from a range of modelling efforts was used by the authors to calculate places in the global tropics where maximum temperatures are predicted to flip from less than 30 degrees C to greater than 30 degrees C by 2050. This temperature threshold is a limit for a number of staple crops, including maize beans and groundnut. Heat stress also affects grass and livestock productivity. Large areas in East African may undergo this flip, according to these models, although the authors warn that these predictions remain highly uncertain.

Thornton and Herrero in a background paper to the World Bank’s 2010 World Development Report investigated the impacts of increased drought frequency on livestock herd dynamics in Kenya’s Kajiado District. ‘Their results indicate that drought every five years keeps the herds stable as it allows sufficient time for the herds to re-establish. A once in three year drought interval by contrast drives livestock density to lower levels . . . . Hence, if there is a greater frequency of drought under climate change, this might have a lasting impact on stocking density, and the productivity of pastoral livestock systems.

The results were extrapolated to all arid and semi-arid districts in Kenya and estimated that 1.8 million animals could be lost by 2030 due to increased drought frequency, with a combined value of US$630 million due to losses in animals, milk and meat production. . . .’

In the face of changes in climate (historical and current), many pastoralists will change the species of animals they keep, or change the composition of the species in their herds. In the space of three decades (between 1997/8 and 2005–10) in Kenya, for example, the ratio of shoats (sheep and goats) to cattle kept increased significantly. Goats, as well as camels, are more drought tolerant than cattle, and also prefer browse to grasses.

Such changes in species mix and distribution will have important implications for overall livestock productivity and nutrition, as well as milk production.’

While change is and always has been fundamental to pastoralist livelihood strategies, much more—and much more rapid and diverse—change is now sweeping the Horn and many of the other drylands of the world, with local population explosions and increasing rangeland fragmentation and civil conflicts coming on top of climate and other global changes whose nature remains highly uncertain. New threats are appearing, as well as new opportunities.

While the ILRI team argues that we can and should look to pastoralist cultures, strategies and innovations for insights into how the wider world can adapt better to climate change, they also say that ‘development at the margins’ is going to be successful only where pastoralists, climate modellers and other scientists  work together:

. . . [A]daptation and response strategies in increasingly variable environments must emerge from grounded local experience and knowledge, as well as be informed by increasingly sophisticated [climate] modeling efforts.’

Support for the conference and book came from the UK Department for International Development, the United States Agency for International Development in Ethiopia, and CORDAID. Purchase the book from Routledge (USD44.96 for the paperback edition): Pastoralism and Development in Africa: Dynamic Change at the Margins, first issued in paperback 2012, edited by Andy Catley, Jeremy Lind and Ian Scoones, Oxon, UK, and New York: Routledge and Earthscan, 328 pages. You’ll find parts of the book available on Google books here.

To read the ILRI chapter—Climate change in sub-Saharan Africa: What consequences for pastoralism?, by Polly Ericksen, Jan de Leeuw, Philip Thornton, Mohammed Said, Mario Herrero and An Notenbaert—contact ILRI communications officer Jane Gitau at j.w.gitau [at] cgiar.org.

As the cooking pot turns: Staple crop and animal foods are being ‘recalibrated’ for a warmer world

The cows get automated

CGIAR has just published a really useful snapshot of the world’s major food crops, animals and tree and water resources and what is likely to happen to them in the face of climate change, the effects of which on food production will require reexamining what’s in the cooking pot, especially in regions where people already do not get enough to eat. Above, a worker on a small farm in Limuru, Kenya, pushes maize stalks (after their cobs have been harvested) through a pulverizer before feeding the stover to the cows; this is one way small-scale farmers can improve their dairy cow feeding and milk yields while reducing the amount of methane their cows generate per unit of milk produced. (Photo on Flickr by Luigi Guarino.)

CGIAR, the world’s leading international agricultural-research-for-development organization, has just done something really useful. It has published a snapshot of how climate change is likely to affect key food crops and livestock farming and natural resources in poor countries, where these staple foods and resources remain the backbone not only of food security but also of national economies. What happens to maize and wheat and rice and cattle and goats and sheep and trees and water, for example, will foretell what happens to the 1 billion people living in severe poverty today.

This snapshot summarizes the state of knowledge on 21 CGIAR crop commodities as well as on the ‘living’ livestock assets of the poor and the water and tree resources on which they depend.  The study, Impacts of climate change on the agricultural and aquatic systems and natural resources within the CGIAR’s mandate, should help decision-makers at all levels prepare better for future food production on our warming planet.

The summaries, written by scientists at 14 of the 15 CGIAR centres, outline the importance of each commodity for food and nutrition security, its biological vulnerability to climate change, and the likely socio-economic vulnerability of the people affected.

The study shows points up some surprising gaps in our knowledge. For example, crops like cassava and yam, which make critically important contributions to the food security of millions of people and are highly climate-resilient, have been little studied in relation to a changing climate. We also know little about how multiple stressors of animals and plants may combine. We also have big knowledge gaps about likely impacts of climate change on weed, pest and disease complexes. We need this information to help identify and evaluate the trade-offs and synergies of particular climate change adaptation and mitigation options in different places.

A few things are already for certain. We must develop hardier varieties of maize, rice and wheat—the three main food staples around the world—quickly to avoid declines in their yields. And the common sources of protein—livestock, fish, and even soybeans—all face difficulties in adapting to the new normal.

Crops and animals till now neglected by major research initiatives, and now considered ‘old-fashioned’ by many, are likely to play an increasingly important role on global food production once again. Drought-resistant camels and goats, ‘famine foods’ such as heat-tolerant cassava and millet, and dual-purpose crops such as protein-rich cowpea (aka black-eyed peas) and groundnut that feed people and animals alike are all likely to come back to the fore in regions with drying or more unpredictable climates.

In some drying regions, smallholders will be forced to switch from crop growing to livestock raising, and/or from raising dairy cows to raising dairy or other goats. This matters to many. As the new CCAFS policy brief reports: ‘In South Asia and sub-Saharan Africa, for example, nearly one billion people living on less than two dollars per day keep livestock; two-thirds of those are women. Fisheries and aquaculture support an additional half-billion people around the world. There is no easy answer for adapting these sectors to changing climates.

But the benefits to people from eating fish and animal protein—as well as raising livestock for their livelihoods—will not evaporate as the planet warms; answers must be found in securing their continued availability.’

While the news seems grim, adaptation is possible. Recent CCAFS research in Africa found that farmers are already adapting to climate change. Some 34% of the farmers interviewed in Africa, for example, have reduced their livestock herd sizes and 48% are managing their feed resources better. The better livestock diets also lower livestock methane emissions per kilogram of milk or meat produced. On the other hand, only 25% of the farmers interviewed have begun using manure or compost to improve their soils and only 10% have begun to manage or store agricultural water.

For more information, visits the CCAFS blog page on Recalibrating food production in a changing climate—What do we know and what can be done?

Read a new policy brief by CCAFS that outlines the challenges required in feeding the estimated 9–10 billion people who will live in this world by 2050. In the brief, the need for a complete recalibration of what crops we grow and animals we raise around the world is detailed, as climate change will bring challenges in weather, water use, and increased pests and diseases of crops and animals alike.

The policy brief is based on a new CCAFS working paper. Read the paper by Philip Thornton and Laura Cramer (eds.). 2012. Impacts of climate change on the agricultural and aquatic systems and natural resources within the CGIAR’s mandate. CCAFS Working Paper 23. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security.

This report was co-edited by ILRI scientist Phil Thornton, who is a scientist at the International Livestock Research Institute (ILRI) who also coordinates one of CCAFS’ research groups. CCAFS is a global partnership launched in 2011 between the research centres of CGIAR and the Earth System Science Partnership. CCAFS facilitates and integrates thematic work across multiple CGIAR Centres and other global, regional and local partners. Its key target groups are resource-poor agricultural producers, and rural and urban consumers of food, in low-income and middle-income countries in the tropics and sub-tropics.

Philip Thornton explains about CCAFS: ‘There are many other examples of the way in which CCAFS is working across disciplines and mandates, and across temporal and spatial scales. These include linking to modelling communities from different fields such as crop modelling and global integrated assessment modelling, and partnering with organisations with skills in the development and provision of downscaled models, decision-tools and datasets that provide the necessary granularity for national and sub-national planning. As well as linking across scientific disciplines, CCAFS recognizes the need to span boundaries across research and policy domains. To link knowledge and action entails involvement of policy-makers in all stages of the research cycle, and an understanding of policy as dynamic and polycentric across the public, private and civil society sectors.’

Read of interviews of Phil Thornton in the following media this week:

The Guardian’s Global Development Blog: When the chips are down: potato, maize and rice crop yields set to fall—Farmers in developing world will have to grow different food to prevent world going hungry in changing climate, says report, 31 Oct 2012.

BBC: Bananas could replace potatoes in warming world, 31 Oct 2012.

Saving the plains: ILRI research team wins Sustainability Science Award for its pastoral research in Masailand

Kitengela rangeland in Kenya: Fencing

Research by ILRI is helping pastoralists in the Kitengela ecosystem better manage their land, animal and wildlife resources (photo: ILRI/Stevie Mann).

A paper by the International Livestock Research Institute (ILRI) that shares experiences from a project that worked to help Kenyan pastoralists better manage their lands, livestock and wildlife resources has won the 2012 Sustainability Science Award.

The yearly award is given by the Ecological Society of America to the authors of a peer-reviewed paper published in the preceding five years that makes the greatest contribution to the emerging science of ecosystem and regional sustainability through the integration of ecological and social sciences.

The winning paper, ‘Evolution of models to support community and policy action with science: Balancing pastoral livelihoods and wildlife conservation in savannas of East Africa’, was published in 2009 in the Proceedings of the National Academy of Sciences (PNAS), a prestigious American science journal. The paper shared experimental work in boundary-spanning research from the Reto-o-Reto (Maasai for ‘I help you, you help me’) project, which was implemented between 2003 and 2008 to help balance action in poverty alleviation and wildlife conservation in four pastoral ecosystems in East Africa, including the Kitengela pastoral ecosystem just south of Nairobi National Park.

Lessons from this project supported the development and adoption of a land-use master plan in Kitengela, which is now helping Maasai pastoralists better manage their land, animal and wildlife resources.

The announcement of this award comes at an appropriate time, just as an inception workshop takes place on ILRI’s Nairobi campus this week (Jun 5-7) for the eastern and southern Africa component of a CGIAR Research Program on Dryland Agriculture.

The following story, written by ILRI consultant Charlie Pye-Smith in 2010, shares experiences of pastoralists in Kitengela, their challenges and their hopes, as a result of this award-winning project.

Saving the plains

Talk to the Maasai who herd their cattle across the Athi-Kaputiei Plains to the south of Nairobi and they’ll tell you that the last (2009–2010) drought was one of the worst in living memory. ‘Many people lost almost all their livestock,’ says pastoralist William Kasio. ‘The vultures were so full they couldn’t eat any more. Even the lions had had enough.’

At the slaughterhouse in Kitengela, over 20,000 emaciated cattle were burned and buried during the drought, and the surrounding plains were littered with sun-bleached carcasses. But for the Maasai, droughts are nothing new, and indeed many believe there is an even graver threat to their survival as cattle herders. ‘Land sales, and the subdivision and fencing off of open land—that’s been the biggest problem we’ve faced in recent years,’ says Kasio, chairman of a marketing organization based at the slaughterhouse.

A generation ago, livestock and wildlife ranged freely across the plains. Today, their movements are hindered by fences, roads, quarries, cement works, flower farms and new buildings. If the development trends of the past decade continue, then the pastoral way of life, and the great wildlife migrations in and out of Nairobi National Park, could become little more than a memory. But now, thanks to a community-inspired planning exercise, there’s a good chance this won’t happen.

The Athi-Kaputiei land-use ‘master plan’, launched in 2011, provides the local council with the legislative teeth it needs to ensure that large expanses of land remain free of fencing, and that new developments are confined to specific areas. ‘We see the master plan as our survival strategy,’ says Stephen Kisemei, a member of Olkejuado County Council. ‘It means we can now plan for the future in a way we never could before.’

The master plan is the culmination of years of research and discussion involving local communities, the council, central government and a range of organizations involved in conservation and animal husbandry. ‘It’s been a very democratic process,’ explains Ogeli Makui of the African Wildlife Foundation. ‘The council and the Department of Physical Planning drafted the master plan, but the Maasai landowners’ associations and other local groups were closely involved in all the discussions.’

Since 2004, teams of young Maasai have helped to draw up maps, which illustrate the scale of land sales and the loss of open rangeland. Managed by ILRI, the mapping program and the associated research showed just how rapidly life has changed on the plains over recent years, and provided much of the data used in the master plan.

At the end of the 19th century, the Athi-Kaputiei Plains were said to boast the most spectacular concentration of wildlife in East Africa. In those days, there were four times as many wild herbivores as there were cattle. Now the reverse is true, with the wildlife beating a steady retreat.

Between 1977 and 2002, the wildlife populations in the plains to the south of Nairobi National Park fell by over 70%. Particularly hard hit were migratory animals such as wildebeest, which traditionally graze in the national park during the dry season and move south in search of new pasture during the wet season. From nearly 40,000 migrating animals in the 1970s, wildebeest numbers have fallen to about 1000 today.

ILRI research suggests that two factors are to blame: poaching, and the loss of habitat and open space. The sub-division of land, frequently followed by the erection of fences, has also made it harder for the pastoralists to move their animals around in search of water and fresh pasture. Paradoxically, the Maasai are partly to blame, as they voted for the privatization of communal ranches in the 1980s. All of a sudden, many families realized they were sitting, within gazing distance of Nairobi, on valuable real estate. Land sales rapidly increased, new developments proliferated and the population of Kitengela almost trebled during the 1990s, from 5,500 to over 17,000.

‘When I was a child in the 1970s,’ recalls Ogeli Makui, as he sips tea outside a shopping mall in Kitengela, ‘there were just a few small stalls here, nothing else. I can remember one year when there were so many wildebeest migrating across this area, followed by packs of wild dogs, that my father told me to drive our sheep home to keep them safe.’ Nowadays, speeding lorries are the main danger.

Even before ILRI produced its first maps, conservationists realized something had to be done to keep the migratory routes open. A Wildlife Conservation Lease Programme, launched in 2000, encouraged pastoralists to keep their land open by paying them 300 shillings (USD4) per acre per year. By 2010, 275 families, owners of some 30,000 acres, had signed up to the latest lease scheme.

The lease scheme is helping to protect one of East Africa’s five great migratory routes, but it isn’t enough on its own to prevent further losses of wildlife, says Jan de Leeuw, head of ILRI’s pastoral livelihoods group. ‘The master plan will certainly help, and it’s a very important step towards improving the management of the plains, but it’s also imperative that we improve the financial situation of the pastoralists to a level where they become the champions of conservation,’ he says.

The better off the Maasai are, the more sympathetic they are likely to be to wildlife conservation, even if they occasionally lose livestock to lions and other predators. The Kitengela Conservation Programme, which is managed by the African Wildlife Foundation, is currently promoting various business enterprises, including community-based tourism, and ILRI is providing support for pastoralists to improve the marketing of their livestock. All this will help, says de Leeuw.

This is one of the few places in the world where you can see major wildlife populations, including 24 species of large mammals, grazing and hunting using your top rifle scopes, often in the company of Maasai cattle. Little wonder, then, that there are conflicts between conservation and development, and sometimes between wildlife and the Maasai. Some of these conflicts will persist—the locals are deeply concerned, for example, about the building of a new town for Nairobi slum-dwellers—but the master plan provides the local council, for the first time, with the means to control development.

‘I’m very optimistic,’ says Councillor Kisemei. ‘I think the master plan will help us to secure the future for the Maasai and for the wildlife. And if we succeed, it will provide a model which could be used in other areas where wildlife and humans live close together.’

Pastoralists still vulnerable

Despite the successes of projects such as Reto-o-Reto in helping pastoral groups, governments and policymakers work together to better manage the resources in pastoral lands; pastoralists are still vulnerable to drought and changes in land use. Scientists from Colorado State University and ILRI have looked at how modelled scenarios relating to factors like access to forage, water and fuel tied to decisions made by pastoralists at household level. Stressors like drought remain a major threat to pastoral livelihoods and more so in areas where livestock compete with wildlife.

The research, carried out in Kenya’s Kajiado District, was published in a paper: ‘Using coupled simulation models to link pastoral decision making and ecosystem services.’ It evaluates pastoralist household wellbeing if access to reserve grazing is lost and the impact of compensation for those who lose access to grazing. The study showed that even though pastoralists that lose access to pasture are likely to experience large livestock losses, those in areas where livestock do not compete with wildlife have greater resilience to drought.

‘Maintaining access to reserve grazing lands is essential in helping pastoralists cope during severe drought,’ said Philip Thornton, a scientist with ILRI and one of the authors of the report. ‘We also found that compensating pastoralists for loss of access to reserve grazing lands increased their resilience.’

The above Kitengela story was written by ILRI consultant Charlie Pye-Smith.

For more on ILRI’s recent award, see: ILRI pastoral research team wins Sustainable Science Award, by Jane Gitau.

Download ‘Evolution of models to support community and policy action with science: Balancing pastoral livelihoods and wildlife conservation in savannas of East Africa’, by R S Reid, D Nkedianye, M Y Said, D Kaelo, M Neselle, O Makui, L Onetu, S Kiruswa, N Ole Kamuaroa, P Kristjanson, J Ogutu, S B BurnSilver, M J Golman, R B Boone, K A Galvin, N M Dickson, Proceedings of the National Academy of Sciences, 3 Nov 2009.

Download ‘Using coupled simulation models to link pastoral decision making and ecosystem services’, by R B Boone, K A Galvin, S B BurnSilver, P K Thornton, D S Ojima, and J R Jawson, Ecology and Society 16(2): 6, 1 Jun 2011.

Read more about the CGIAR Research Program on Dryland Systems and more on ILRI’s news blogs (below) about the three-day planning workshop for this program, which ends today:

ILRI Clippings Blog: Foolhardy? Or just hardy? New program tackles climate change and livestock markets in the Horn, 7 Jun 2012.

ILRI Clippings Blog: Supporting dryland pastoralism with eco-conservancies, livestock insurance and livestock-based drought interventions, 5 Jun 2012.

ILRI Clippings Blog: CGIAR Drylands Research Program sets directions for East and Southern Africa, 4 Jun 2012.

People, Livestock and Environment at ILRI Blog: Taming Africa’s drylands to produce food, 5 Jun 2012.

People, Livestock and Environment at ILRI Blog: Collaboration in drylands research will achieve greater impact, 5 Jun 2012.

Making Asian agriculture smarter

cambodia21_lo

A cow feeds on improved CIAT forage grasses, in Kampong Cham, Cambodia (photo credit: Neil Palmer/CIAT).

Last week, coming on the heels of a Planet Under Pressure conference in London, which set out to better define our ‘planetary boundaries’ and to offer scientific inputs to the Rio+20 United Nations sustainable development conference this June, a group of leaders in Asia—comprising agriculture and meteorology chiefs, climate negotiators and specialists, and heads of development agencies—met to hammer out a consensus on ways to make Asian agriculture smarter.

The workshop, Climate-smart agriculture in Asia: Research and development priorities, was held 11–12 April 2012 in Bangkok. It was organized by the Asia-Pacific Association of Agricultural Research Institutes; the CGIAR Research Program on Climate Change, Agriculture and Food Security; and the World Meteorological Organization.

This group set itself three ambitious tasks: To determine the best options (1) for producing food that will generate lower levels of greenhouse gases, which cause global warming; (2) for producing much greater amounts of food, which are needed to feed the region’s rapidly growing and urbanizing population; and (3) for doing all this under a changing climate that, if farming and farm policies don’t change, is expected to reduce agricultural productivity in the region by anywhere from 10 to 50 per cent over the next three decades.

The workshop participants started by reviewing the best practices and technologies now available for making agriculture ‘climate smart’. They then reviewed current understanding of how climate change is likely to impact Asian agriculture. They then agreed on what are the gaps in the solutions now available and which kinds of research and development should be given highest priority to fill those gaps. Finally, they developed a plan for filling the gaps and linking scientific knowledge with policy actions at all levels.

On the second of this two-day workshop, the participants were asked to short-list no more than ten key areas as being of highest priority for Asia’s research and development communities.

This exercise tempted this blogger to suggest ten suitable areas in the livestock sector.

(1) Lower greenhouse gas emissions from livestock through adoption of improved feed supplements (crops residues) that reduce greenhouse gas emissions.
Contact ILRI animal nutritionist Michael Blümmel, based in Hydrabad, for more information: m.blummel at cgiar.org

(2) Safeguard public health by enhancing Asia’s capacity to detect and control outbreaks of infectious diseases transmitted between animals and people.
Contact ILRI veterinary epidemiologist Jeff Gilbert, based in Vientienne, for more information: j.gilbert at cgiar.org

(3) Improve the efficiency of water used for livestock and forage production.
Contact ILRI rangeland ecologist Don Peden, based in Vancouver, for more information: d.peden at cgiar.org 

(4) Pay livestock keepers for their provision of environmental services.
Contact ILRI ecologist Jan de Leeuw, based in Nairobi, for more information: j.leeuw at cgiar.org

(5) Recommend levels of consumption of meat, milk and eggs appropriate for the health of people, their livelihoods and environments in different regions and communities.
Contact ILRI partner Tara Garnett, who runs the Food Climate Research Network based in Guildford, for more information:  t.garnett at surrey.ac.uk

(6) Design institutional and market mechanisms that support the poorer livestock keepers, women in particular.
Contact ILRI agricultural economist Steve Staal, based in Nairobi, for more information: s.staal at cgiar.org 

(7) Educate publics in the West on the markedly different roles that livestock play in different regions of the world.
Contact ILRI systems analyst Philip Thornton, based in Edinburgh, for more information: p.thornton at cgiar.org

(8) Adopt risk- rather than rule-based approaches to ensuring the safety of livestock foods.
Contact ILRI veterinary epidemiologist Delia Grace, based in Nairobi, for more information: d.grace at cgiar.org 

(9) Focus attention on small-scale, relatively extensive, mixed crop-and-livestock production systems.
Contact ILRI systems analyst Mario Herrero, based in Nairobi, for more information: m.herrero at cgiar.org 

(10) Give livestock-keeping communities relevant and timely climate and other information via mobile technologies.
Contact ILRI knowledge manager Pier-Paolo Ficarelli, based in Delhi, for more information: p.ficarelli at cgiar.org

Do you have a ‘top-ten’ list of what could make Asian agriculture ‘smart agriculture’? Post it in the Comment box, please!

Go here for ILRI blogs about the Planet Under Pressure conference.

ILRI in Asia blog

Planet under pressure / Bits and pieces

This 6-minute animated film explains how we can feed the world by 2050; it was produced by CCAFS and first shown at the Planet Under Pressure conference in London, Mar 2012.

In this last posting from the International Livestock Research Institute (ILRI)  about the recent Planet Under Pressure (PUP) conference (London, 26-29 Mar 2012), we highlight a few of our favourite things.

Animated film on a ‘safe operating space’ for food security to 2050
The Commission on Sustainable Agriculture and Climate Change launched a short animation that illustrates key actions needed for a ‘safe operating space’ for food security in 2050. An integrated approach must balance how much food we produce, how we adapt to a changing climate and how much agriculture contributes to further climate change. The film offers a summary of steps needed to meet food needs and stabilize the climate. It is short (6 minutes) and very good. Watch it here: How to feed the world in 2050: actions in a changing climate, Mar 2012.

Report from the Commission on Sustainable Agriculture and Climate Change
Efforts to alleviate the worst effects of climate change cannot succeed without simultaneously addressing the crises in global agriculture and the food system and empowering the world’s most vulnerable populations. Many of these issues have commonly been ‘stovepiped’ into different scientific disciplines, economic sectors, policy processes and geographic regions. The Commission on Sustainable Agriculture and Climate Change was set up in 2011 to come up with an integrated approach for dealing with these urgent, globally interconnected challenges. Their final report and summary for policymakers, launched at PUP, offer concrete actions to transforming the food system to achieve food security in the face of climate change.

Intensifying agriculture within planetary boundaries
Deborah Bossio, a soil scientist who in Feb 2012 took up the position of research area leader of the Tropical Soil Biology and Fertility Institute of the International Center for Tropical Agriculture (CIAT-TSBF), led a session on ‘Intensifying agriculture within planetary boundaries’. One of the panel speakers was Kate Brauman, one of the authors of a paper published in Nature last October, Solutions for a cultivated planet, led by Jon Foley, director of the Institute on the Environment at the University of Minnesota, and co-authored by many others.

‘We are adding 2 billion people to the world by 2050’, Brauman said, ‘by which time we’ll need to double food production. We need to do this in a sustainable way; we need to do this while keeping a world we’d like to live in. But agriculture’s environmental footprint is big: Agriculture uses 40 per cent of the Earth’s land surface, is responsible for 70 per cent of all water use, and generates about 35 per cent of the greenhouse gases that are warming our Earth, mostly deforestation.’

We have a three-part challenge’, Brauman said. ‘Feed  everyone today. Double food production by 2050. And do that in a sustainable way.’

The ‘Solutions for a cultivated planet’ paper offers a 5-part solution:
(1) Slow agricultural expansion: Most expansion will give us relatively small gains at very great environmental costs.
(2) Close yield gaps to increase agricultural productivity: Increase production through intensification where ag systems are already in place
(3) Improve resource efficiency of agriculture: Grow smarter by noting where there is excessive and insufficient nitrogen sources, water sources, etc., and get more bang for our buck.
(4) Close diet gaps: Only 60% of global production is directly consumable, with much going to animal feed, etc.
(5) Reduce food waste, whether stored on poor farms or thrown away in the refrigerators of the rich

‘There is no single way’, Brauman concluded. ‘We need to use all five of these strategies. It can’t be about organic vs commercial, but about both. We’ve only got one planet. We really have to do this right.’

Justin Gillis, in the New York Times Green Blog (Deep thinking about the future of food), points out what is special about Foley’s study: ‘The group finds, as others have before them, that the challenge of doubling global food production in coming decades can probably be met, albeit with considerable difficulty. The interesting thing to me about the analysis is that it doesn’t treat any of the problems confronting the food system as superior to the others—it treats the environmental problem, the supply problem and the equity problem as equally important, laying out a case that they all need to be tackled at once.’

Read an earlier post on this ILRI Clippings Blog about the ‘Solutions for a cultivated planet’ paper: A BIG conversation starts on ways to increase food supplies while protecting environments and eradicating hunger, 14 Oct 2011.

CGIAR Research Program on Water, Land and Ecosystems
A CGIAR Research Program on Water, Land and Ecosystems was launched at PUP. This multi-institutional program is led by the International Water Management Institute (IWMI), recently named this year’s Stockholm Water Prize Laureate. The new program embodies a ten-year commitment to bring about a radical transformation in the way land, water and natural systems are managed. ILRI is one of its 11 CGIAR partners. The new research program is the latest in a series of initiatives designed to promote more joined-up-thinking on agricultural research for development at CGIAR, the world’s largest consortium of agricultural researchers. The program’s newly appointed director, Simon Cook, says that more effective, equitable and environmentally sensitive pricing of natural assets like water needs to be mainstreamed. And the fragmented ways in which river basins are managed—with different sectors, such as agriculture, industry, environment and mining, considered separately rather than as interrelated and interdependent—needs to be fixed. ‘A re-think is needed’, Cook says.

Biomas under pressure
ILRI scientist Diego Valbuena gave a handsome presentation on Biomass pressures in mixed farms: Implications for livelihoods and ecosystems services in South Asia and sub-Saharan Africa at a ‘Food security’ session on the first day of PUP.  The work behind this presentation was conducted by members of the CGIAR Systemwide Livestock Programme. If the planet is under pressure (and it is), the pressure on biomass might serve as its poster child. Most of the world’s small-scale farmers mix crop growing with livestock raising, with each activity supporting the other. One of the major synergies exemplified by kind of integrated farming is the use of crop residues—the leaves, stalks and other remains of crops after their grain or legumes have been harvested—for feeding livestock as well as for conserving soil nutrients (through mulching), for fuel and for construction. As agricultural systems intensify, the pressures on the biomass available increase. This research is identifying optimal ways of using crop residues in different regions and circumstances.

And the one that got away
One session that never happened was on ‘Livestock and global change: A dialogue on key pressures and potential solutions’. To have been led by systems analysts Mario Herrero, of ILRI, and Philip Thornton, of ILRI and the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS), and to have included on the panel ILRI veterinary epidemiologist Delia Grace and ILRI partner Tara Garnett, who leads the Food Climate Research Network at the University of Surrey, this session was cancelled due to an emergency. The session was sorely missed since there was a dearth of discussion at PUP on livestock issues, which  these scientists and others believe need to have a higher profile at such events. What the session would have covered:

Due to the magnitude of the livestock sector, the pressures it exerts on the world’s natural resources, and the multiple socio-economic benefits it provides, this session will span across many subject areas of interest (food security, poverty reduction, vulnerability, greenhouse gas emissions mitigation, competition for biomass, land, water, and others). The topic is central to developing-country agendas, which often have large livestock sectors and people depending on them.’

Read previous about the Planet Under Pressure conference on the ILRI News Blog
Planet under pressure / Livestock under the radar, 26 Mar 2012.

Planet under pressure / A numbers game–but which numbers are the numbers that matter?, 26 Mar 2012.

Planet under pressure / Food security policy brief, 27 Mar 2012.

Planet under pressure / ‘Get out of the nerd loop’–NYT environmental reporter, 27 Mar 2012.

Planet under pressure / Agriculture (finally) at the global change table, 28 Mar 2012.

Planet under pressure / Navigating the Anthropocene, 29 Mar 2012.

Planet under pressure / Where’s the beef? 9 Apr 2012.