Rinderpest: Scourge of pastoralists defeated, at long last, by pastoralists

Milestones in the eradication of rinderpest

A timeline of major events in the history of rinderpest in Africa from its introduction in 1887, in military cattle brought to Eritrea to feed troops, to the declaration of rinderpest’s eradication in 2011. RP, rinderpest. (Illustration credit: Figure 1 in ‘Rinderpest eradication: Appropriate technology and social innovations’, 2010, by Jeffrey Mariner et al. Science 337, 1309.)

The invention of sex and death, evolutionary biologists tell us, allowed organisms to escape wholesale extermination by parasitic infections. The invention of antibiotics and other miracles of modern medicine allows many of us, particularly in rich countries, to think we can escape most disease, if not death. This of course is over-optimistic and flies in the face of all of human history. Disease has altered those histories, stamped whole continents with its imprint, shaped global affairs—bubonic plague in 14th-century Europe, smallpox in the Americas in the 16th century following European invasion, potato blight in 19th-century Ireland, the Spanish flu pandemic that circled the world in 1918, malaria and HIV/AIDS in Africa today.

Some of the most important diseases have killed human populations indirectly, by annihilating the crops and animals that sustained us. This happened when late blight affected the potato crop in Ireland in the 1840s, killing some 1 million people and causing another 1.5 million to emigrate in The Great Hunger, and when brown spot of rice ruined crops in Bangladesh and eastern India in 1943, leading to the deaths of 2 million or more people in The Bengal Famine.

Among the latter ‘food plagues’ is a remarkably little-known viral disease of cattle and other ungulates that ‘has been blamed for speeding the fall of the Roman Empire, aiding the conquests of Genghis Khan and hindering those of Charlemagne, opening the way for the French and Russian revolutions, and subjugating East Africa to colonization (Rinderpest, scourge of cattle, is vanquishedNew York Times, 27 Jun 2011).

Rinderpest, a German term meaning ‘cattle plague’, is a viral disease related to measles (recent evidence suggests the measles virus may have diverged from the rinderpest virus during the Middle Ages). It is arguably the most important animal disease historically. It entered the Horn of Africa from the port of Massawa, in what is now Eritrea, in 1887 with an invading Italian army that was importing Indian cattle for food and draft power.

The virus exploded so fast that it reached South Africa within a decade (and is considered one of the factors that impoverished Boer farmers as war with the English approached). It doomed East Africa’s wandering herders, subsisting on milk mixed with cow blood. Historians believe a third of them or more starved to death—Rinderpest, scourge of cattle, is vanquished, New York Times, 27 Jun 2011.

Killing animals within days of infection, the rinderpest epidemic emptied East Africa of most of its large grazing animal populations, wiping out 80–90 per cent of the region’s cattle, which, it is argued, left the remaining population too weak from hunger to oppose European colonialism.

Rinderpest struck East Africa in 1890, and in two years 95 percent of the buffalo and wildebeest there had died. So began a series of events of such profound ecological importance that the repercussions are still being felt today.—A R E Sinclair and M Norton-Griffiths, editors, Serengeti: Dynamics of an Ecosystem, 1979.

Journalist Fred Pearce gives more details.

Great pastoral civilizations across the continent were shattered. Central African cattle-rearing tribes like the Tutsi and Karamajong starved, along with Sudanese nations like the Dinka and Bari, West Africans like the Fulani, and southern Africans like the Nama and Herero. The folklore of the Maasai of East Africa tells of the enkidaaroto, the “destruction,” of 1891. They lost most of their cattle, and two-thirds of the Maasai died. One elder later recalled that the corpses were “so many and so close together that the vultures had forgotten how to fly.”

Many of these societies never recovered their numbers, let alone their wealth and power. Rinderpest served up the continent on a plate for European colonialists. In its wake, the Germans and British secured control of Tanzania and Kenya with barely a fight. In southern Africa, the hungry and destitute Zulus migrated to the gold mines of Witwatersrand, helping to create the brutal social divide between black and white from which apartheid sprang.

It is an extraordinary story, rarely told. . . .

Fred Pearce: Why Africa’s national parks are failing to save wildlife, Yale Environment 360, 19 Jan 2010.

Dan Charles, of National Public Radio, in the USA, reports on an article published in Science this month demonstrating that it was African cattle herders that wiped this ancient plague from the face of the Earth.

‘Twice in all of history, humans have managed to eradicate a devastating disease. You’ve heard of the first one, I suspect: smallpox. But rinderpest? . . .

‘In this week’s issue of the journal Science, several of the architects of rinderpest’s elimination lay out the reasons for their success. The key innovation wasn’t technological, they say. It was social and cultural.

‘Technology certainly played a part. Half a century ago, a British veterinarian named Walter Plowright, working in Kenya, created the first truly effective and safe vaccine for rinderpest. . . .

‘Later, Jeffrey Mariner of the Tufts Cummings School of Veterinary Medicine, developed a version of the vaccine that didn’t need to be refrigerated, allowing veterinarians to use it far from roads and electricity.

‘Yet the disease persisted in Africa, surviving in remote areas plagued by weak government and chronic conflict, such as southern Sudan and parts of Uganda, Ethiopia, and Somalia. Veterinarians rarely ventured into those areas, and it was hard to know where vaccinations were even needed because government officials were reluctant to report outbreaks.

Mariner, who now works at the International Livestock Research Institute in Kenya, says that ultimately, the skills and knowledge of nomadic cattle herders who lived in those hard-to-reach areas were the keys to cracking the rinderpest puzzle.

“Those farmers could tell us where outbreaks were occurring,” Mariner tells The Salt, speaking by phone from Nairobi. In addition, some nomadic farmers got training as “community animal health workers” and were able to carry out vaccinations themselves. They proved better at the job than veterinarians, in part because they knew their animals. . . .

Community animal health worker vaccinating animals against rinderpest in Karamajong, Uganda

Tom Olaka, a community animal health worker in Karamajong, northern Uganda, was part of a vaccination campaign in remote areas of the Horn of Africa that drove the cattle plague rinderpest to extinction in 2010 (photo credit Christine Jost).

‘Tom Olaka, a community animal health worker in the border region between Uganda, Sudan, and Kenya, identified and reported the last outbreak of rinderpest in 2000. The virus was officially declared extinct last year. Around the world, cattle farmers can breathe just a little easier.’

Read the whole article by Dan Charles at NPR: How African Cattle Herders Wiped Out An Ancient Plague, 14 Sep 2012.

Read the ILRI News Blog about this: New analysis in ‘Science’ tells how world eradicated deadliest cattle plague from the face of the Earth, 13 Sep 2012.

Read the paper in Science (subscription required to read full text): Rinderpest eradication: Appropriate technology and social innovations, by Jeffrey Mariner, James House, Charles Mebus, Albert Sollod, Dickens Chibeu, Bryony Jones, Peter Roeder, Berhanu Admassu, Gijs van ’t Klooster, 14 September 2012, Vol. 337 no. 6100 pp. 1309–1312, DOI: 10.1126/science.1223805.

Read previous articles on the ILRI News and Clippings blogs about the eradication of rinderpest:

ILRI’s Jeff Mariner speaks on what he learned from the eradication of rinderpest–and his new fight against ‘goat plague’, 15 Sep 2012.

Goat plague next target of veterinary authorities now that cattle plague has been eradicated, 4 Jul 2011.

Deadly rinderpest virus today declared eradicated from the earth–’greatest achievement in veterinary medicine’, 28 Jun 2011.

After successful eradication of rinderpest, African researchers now focus on peste des petits ruminants, the most urgent threat to African livestock, 22 Nov 2010.

Why technical breakthroughs matter: They helped drive a cattle plague to extinction, 28 Oct 2010.

New analysis in ‘Science’ tells how world eradicated deadliest cattle plague from the face of the Earth

Afar community animal health worker

In a new analysis in Science, ILRI researcher Jeffrey Mariner describes how the world eradicated deadliest cattle plague, the second such success after smallpox. The authors of the paper reveal the essential role of Africa’s nomadic herders in ridding the world of rinderpest. Above, an Afar community animal health worker in 1993 describes the appearance and characteristics of rinderpest in cattle (photo by Jeff Mariner).

A new analysis published today in Science traces the recent global eradication of the deadliest of cattle diseases, crediting not only the development of a new, heat-resistant vaccine, but also the insight of local African herders, who guided scientists in deciding which animals to immunize and when. The study provides new insights into how the successful battle against rinderpest in Africa, the last stronghold of the disease, might be applied to similar diseases that today ravage the livestock populations on which the livelihoods of one billion of the world’s poor depend.

Capable of wiping out a family’s cattle in just a few days, rinderpest was declared vanquished in May 2011. After smallpox, it is only the second disease (and first livestock disease) ever to be eradicated from the earth.

‘The elimination of rinderpest is an enormous triumph against a disease that has plagued animals and humankind for centuries’, said Jimmy Smith, director general of the International Livestock Research Institute (ILRI). ‘Science succeeded despite limited resources, and we now know how. We are committed to applying the lessons in this study to making progress against other similarly destructive livestock diseases.’

According to the analysis, which was conducted by international scientists coordinated by ILRI, and published this week in Science, the eradication of rinderpest happened thanks to the development of an effective temperature-stable vaccine, collaborations between veterinary health officials and cattle farmers to deliver those vaccines, and reliance on the knowledge and expertise of the local herders to determine the location and movement of outbreaks.

The cattle plague and its path of destruction
Rinderpest, known as ‘cattle plague’ in English, is thought to have had its origin in the dense cattle herds of Central Eurasia more than two millennia ago and subsequently spread through warfare and trade to cattle in Europe, Asia and eventually Africa. Caused by a virus related to the one that causes measles and canine distemper, rinderpest could infect cows, water buffalos and other cloven-hoofed animals, leading to a high fever, severe diarrhea, then dehydration and emaciation. The pathogen could kill 90 per cent of a herd, wiping out an entire farm’s livestock in just a matter of days. There was no treatment.

While rinderpest is not dangerous to human health, its impact on humanity has been significant. Its path of destruction has been linked to many history-changing events such as the fall of the Roman Empire, the French Revolution and famines throughout Africa since the 19th century. Indeed, nearly three-quarters of the rural poor and some one-third of the urban poor depend on livestock for their food, income, traction, manure or other services. Livestock provide poor households with up to half their income and between 6 and 35 per cent of their protein consumption. The loss of a single milking animal can affect a family’s economic health, while depriving it of a primary source of nutrition.

Road to eradication
The first major contributing factor to eradication, as identified by the analysis, was a major improvement made to an existing rinderpest vaccine. While the original vaccine was safe, effective, affordable, and easy to produce, it needed to be refrigerated—making it nearly impossible to transport it to remote rural villages. With the development of a new heat-resistant vaccine formulation in 1990 that could be stored at 37 °C for eight months, and in the field without refrigeration for 30 days, scientists had a tool that would become the cornerstone of the eradication effort in remote pastoral areas of Africa.

But according to ILRI’s Jeffrey Mariner, the analysis’ lead author and inventor of the temperature-stable rinderpest vaccine, it was the role played by pastoralists that really turned rinderpest on its head.

As part of a public-private-community partnership, Mariner and colleagues trained what they called community-based animal health workers, or CAHWs—local pastoralists who were willing to travel on foot and able to work in remote areas—on how to deliver the new vaccine. These CAHWs carried the vaccine from herd to herd, immunizing all the cattle in their communities.

The local herders performed as well, if not better, than did veterinarians at vaccinating the herds—in fact often achieving higher than 80 per cent herd immunity in a short time—remarkable for a disease that had plagued most of the world for millennia. Indeed, it turned out that the pastoralists were not only very, very good at delivering the vaccine, but that they also knew more about the disease and how to stop it than many of the experts.

‘We soon discovered that the livestock owners knew more than anyone—including government officials, researchers or veterinarians—where outbreaks were occurring’, Mariner said. ‘It was their expertise about the sizes of cattle herds, their location, seasonal movement patterns and optimal time for vaccination that made it possible for us to eradicate rinderpest.’

Based on their immense expertise about migratory patterns and in recognizing early signs of infection, the herders were able to pinpoint, well before scientists ever could, where some of the final outbreaks were occurring—often where conventional surveillance activities had failed to disclose disease. Harnessing this knowledge of rinderpest through ‘participatory surveillance’ of outbreaks to CAHW delivery of vaccination proved to be the most successful approach to monitoring and controlling the disease. It effectively removed the disease from some of the hardest-to-reach, but also most disease-ridden, communities.

Applying rinderpest lessons to other diseases
While livestock and those who depend on them for food, transportation and economic stability are now safe from one major pathogen, they continue to be plagued by a number of other dangerous and debilitating diseases—some as deadly as rinderpest.

The international animal health community is now gearing up to address the next major constraint to livestock livelihoods in Africa and Asia. In their analysis, Mariner and colleagues consider how the lessons learned from battling rinderpest can be applied to protect livestock from other infectious agents—particularly peste des petits ruminants (PPR), also known as ‘goat plague’. Strategies to address PPR using the lessons from rinderpest have been developed and action is under way to mobilize international support for a coordinated program to tackle PPR. As a next step, ILRI and the Africa Union/Interafrican Bureau for Animal Resources are planning to host the next meeting of the PPR Alliance, a partnership of research and development organizations who prioritize PPR, in Nairobi in early 2013.

A dangerous virus that can destroy whole flocks of sheep and goats, PPR threatens livestock owners in Africa, Asia and the Middle East, in particular. As with rinderpest, a sheep or goat infected with PPR will come down with a high fever and will stop eating, leading to severe diarrhea and death. Eventually, it will take down the entire herd of the animals, which are equal to cattle in their importance to the poor. And controlling PPR is made challenging by the short life span and heavy trading of sheep and goats—making it difficult to keep the disease in check and preventing its spread to new areas.

Nonetheless, the lessons of rinderpest eradication have begun to have an impact on the toll exacted by goat plague. Participatory surveillance methods are now applied in many countries, CAHWs are now frequently involved in vaccination campaigns and ILRI has developed a temperature-stable vaccine that can be transported to rural farms and has started to put into place training programs for shepherds and farmers in Uganda and Sudan to deliver it.

Eventually, these same lessons could be applied to other livestock diseases such as foot-and-mouth disease—even some that have recently jumped to humans, like avian flu. Such ‘zoonotic’ diseases are responsible for 2.4 billion cases of human illness and 2.2 million deaths per year, primarily in low- and middle-income countries.

Read the paper in Science (subscription required to read full text): Rinderpest eradication: Appropriate technology and social innovations, by Jeffrey Mariner, James House, Charles Mebus, Albert Sollod, Dickens Chibeu, Bryony Jones, Peter Roeder, Berhanu Admassu, Gijs van ’t Klooster, 14 September 2012, Vol. 337 no. 6100 pp. 1309–1312, DOI: 10.1126/science.1223805.

Read previous articles on this blog about the eradication of rinderpest: Goat plague next target of veterinary authorities now that cattle plague has been eradicated, 4 Jul 2011.

Deadly rinderpest virus today declared eradicated from the earth–’greatest achievement in veterinary medicine’, 28 Jun 2011.

After successful eradication of rinderpest, African researchers now focus on peste des petits ruminants, the most urgent threat to African livestock, 22 Nov 2010.

Why technical breakthroughs matter: They helped drive a cattle plague to extinction, 28 Oct 2010.

Goat plague next target of veterinary authorities now that cattle plague has been eradicated

Last known occurrences of rinderpest since 1995. IFPRI Discussion Paper 00923, November 2009, ‘The Global Effort to Eradicate Rinderpest’ by Peter Roeder and Karl Rich, 2020 Vision Initiative, a paper prepared for a project on Millions Fed: Proven Successes in Agricultural Development (www.ifpri.org/millionsfed) (illustration credit: FAO GREP).

Jeffrey Mariner, former advisor for special action areas to the Pan-African Rinderpest Campaign and current senior scientist at the International Livestock Research Institute (ILRI), based in Kenya, is one of several authors of a paper published in the current issue of Veterinary Record on the subject of the rising importance of building a systematic program to eradicate a goat disease known as ‘peste des petits ruminants’ (PPR), or goat plague.

The editorial in the Veterinary Record explains why goat plague is replacing cattle plague among the world’s verterinary researchers.

‘This week saw a landmark in the history of the veterinary profession and, more specifically, its management of disease threats to food security. The Food and Agriculture Organization of the United Nations (FAO) announced on June 28, 2011 that its member countries had passed a resolution declaring rinderpest to have been eradicated globally, building on an announcement in May that the World Organisation for Animal Health (OIE) at its General Session had passed a resolution to the effect that all countries in the world had been formally accredited as free from rinderpest.

‘These events mark the fact that the virus is no longer present in any of its natural hosts on this planet. No longer is it a cause of disease or a constraint to international trade. What is not generally appreciated is that the eradication of rinderpest has yielded benefits that surpass virtually every other development programme in agriculture, and will continue to do so into the future. For example, a preliminary study in Chad shows that over the period 1963 to 2002, each dollar spent on rinderpest eradication led to a benefit of at least US $16, a conservative estimate that only takes into account the benefits from reduced cattle deaths and resulting herd growth, without including secondary impacts on the economy as a whole (Rich and others 2011).

‘Building on the dramatic success of the global effort to eradicate rinderpest we now wish to draw attention to a related but significantly different morbillivirus disease, peste des petits ruminants (PPR), also known variously as goat plague, pseudorinderpest, pneumoenteritis and kata. A comprehensive review of the disease by research scientists at the Institute for Animal Health Pirbright laboratory (IAH Pirbright) is published in this issue of Veterinary Record and explains the scientific basis for considering eradication (Baron and others 2011).

‘Until relatively recently PPR was considered to be a parochial disease of west Africa; however, its range is now recognised to affect most of sub-Saharan Africa as well as a swathe of countries from Turkey through the Middle East to south Asia with recent alarming extensions into north Africa, central Asian countries and China. Capable of causing very high mortality in susceptible goat herds and sheep flocks, PPR exerts a major economic impact on farmers and their families dependent on small ruminants. There is a growing appreciation that PPR is a most serious constraint to the livelihoods of farming families and to food security in affected countries and that its control warrants significant investment. An additional concern is the lethal nature of PPR infection in wildlife species, many of which are endangered or threatened, including gazelles and mountain caprines. Until recently, losses were apparently restricted to extensive wildlife collections in the Middle East but now outbreaks are being recognised in free-ranging species such as the Sindh ibex (Capra aegagrus blythi) in Pakistan. It is probable that many cases of wildlife disease have passed unnoticed in remote locations.

‘Encouraged by what has been achieved with rinderpest and an understanding that the factors that marked rinderpest eradication as feasible apply equally to PPR, we believe that a global programme for the total eradication of PPR should be established as an international undertaking without delay. The FAO has recently hosted a number of symposia and workshops at which participating chief veterinary officers have unanimously requested such a global initiative against PPR. . . .’

Read the whole editorial in Veterinary Record: Rinderpest eradicated; what next?, 2011: 169. DOI:10-11 doi:10.1136/vr.d4011

Read a paper by Peter Roeder and ILRI scientist Karl Rich, The global effort to eradicate rinderpest, IFPRI Discussion Paper 00923, November 2009, prepared for the project on Millions Fed: Proven Successes in Agricultural Development.

Deadly rinderpest virus today declared eradicated from the earth–‘greatest achievement in veterinary medicine’

At OIE, ILRI's Jeff Mariner and others responsible for the eradication of rinderpest

At the 79th General Session of the United Nations World Organisation for Animal Health (OIE), in Paris in May 2011, ILRI’s Jeff Mariner (second from right) stands among a group of distinguished people heading work responsible for the eradication of rinderpest, a status officially declared at this meeting (image credit: OIE).

Several world bodies are celebrating what is being described as ‘the greatest achievement in veterinary medicine’: the eradication of only the second disease from the face of the earth.

The disease is rinderpest, which means ‘cattle plague’ in German. It kills animals by a virus—and people by starving them through massive losses of their livestock.

‘In the nineteenth and twentieth centuries,’ reports the United Nations Food and Agriculture Organization (FAO), ‘the disease devastated parts of Africa, triggering extensive famines. . . . After decades of efforts to stamp out a disease that kept crossing national borders, countries and institutions agreed they needed to coordinate their efforts under a single, cohesive programme. In 1994, the Global Rinderpest Eradication Programme (GREP) was established at the UN Food and Agriculture Organization (FAO), in close association with the World Organization for Animal Health (OIE).

‘Excellent science, a massive vaccination effort, close international coordination and the commitment of people at all levels have helped make rinderpest eradication possible.

‘On June 28, 2011, FAO’s governing Conference will adopt a resolution officially declaring that rinderpest has been eradicated from animals worldwide. The successful fight against rinderpest underscores what can be achieved when communities, countries and institutions work together.’

Nobel Laureate Peter Doherty

Australian Peter Doherty, 1996 winner of the Nobel Prize for Medicine who served on the board of trustees of the International Laboratory for Research on Animal Diseases (ILRAD), a predecessor of  ILRI (photo credit: published on the Advance website).

Australian Peter Doherty, an immunologist who is the only veterinarian to win the Nobel Prize, for Physiology or Medicine, in 1996, and who served as chair of the board of trustees research program of the International Laboratory for Research on Animal Diseases (ILRAD), a predecessor of the International Livestock Research Institute (ILRI), is attending the FAO ceremonies this week. In an interview with FAO, he said:

Vaccine research is currently a very dynamic area of investigation and with sufficient investment and the enthusiastic participation of industry partners at the “downstream” end, we can achieve even better vaccines against many veterinary and human diseases.

The Washington Post in May reported that ‘the World Organization for Animal Health, at its annual meeting in Paris on Wednesday, accepted documentation from the last 14 countries that they were now free of rinderpest. The organization, which goes by its French acronym, OIE, was started in 1924 in response to a rinderpest importation in Europe.

‘The most recent recorded outbreak occurred in Kenya in 2001. Much of the past decade has been spent looking for new cases, in domesticated animals and in the wild, wandering herds of ungulates, or hoofed animals, in East Africa. The last place of especially intense surveillance was Somalia, where the final outbreak of smallpox occurred in 1977.

‘“There are a huge number of unsung heroes in lots of countries that made this possible,” said Michael Baron, a rinderpest virologist at the Institute for Animal Health in Surrey, England. “In most places, they were ordinary veterinary workers who were doing the vaccination, the surveillance, the teaching.”

‘Three things made rinderpest eradicable. Animals that survived infection became immune for life. A vaccine developed in the 1960s by Walter Plowright, an English scientist who died last year at 86, provided equally good immunity. And even though the virus could infect wild animals, it did not have a reservoir of host animals capable of carrying it for prolonged periods without becoming ill.

‘In 1994, the FAO launched an eradication program that was largely financed by European countries, although the United States, which never had rinderpest, also contributed money. The effort consisted of massive vaccination campaigns, which were made more practicable when two American researchers made a version of the Plowright vaccine that required no refrigeration. . . .’

One of those researchers was Jeffrey Mariner, now working at ILRI, in Nairobi, Kenya. Mariner also helped in surveillance work ‘with a technique called “participatory epidemiology” in which outside surveyors meet with herdsmen and ask open-ended questions about the health of their animals and when they last noticed certain symptoms.

‘“It was local knowledge that really helped us trace back the last places where transmission occurred—sitting down underneath a tree in the shade, listening to storytelling,” said Lubroth, of the FAO. . . .’

Read the whole article in the Washington Post, Rinderpest, or ‘cattle plague,’ becomes only second disease to be eradicated, 27 May 2011.

Read FAO’s interview of Peter Doherty: Healthier animals, healthier people, June 2011.

Why technical breakthroughs matter: They helped drive a cattle plague to extinction

Community animal health worker vaccinating animals against rinderpest in Karamajong, Uganda

Tom Olaka, a community animal health worker in Karamajong, northern Uganda, was part of a vaccination campaign in remote areas of the Horn of Africa that drove the cattle plague rinderpest to extinction in 2010 (photo credit: Christine Jost).

A superb example of why technical breakthroughs matter is reported in the current issue (22 October 2010) of the leading science journal, Science.

The eradication of rinderpest from the face of the earth, probably the most remarkable achievement in the history of veterinary science, is a milestone expected to be announced in mid-2011 pending a review of final official disease status reports from a handful of countries to the World Organisation for Animal Health.

A plague of cattle and wild ungulates, rinderpest would not have been eradicated without such a technical breakthrough. This was the development of an improved vaccine that did not require a 'cold chain' and thus could be administered in some of the most inhospitable regions in the Horn of Africa, where the virus was able to persist due to lack of vaccination campaigns in these hotspots.

Rinderpest is a viral livestock disease that has afflicted Europe, Asia and Africa for centuries. It killed more than 90 per cent of the domesticated animals, as well as untold numbers of people and plains game, in Africa at the turn of the 19th century, a devastation so complete that its impacts are still felt today, more than a century later. The last-known outbreak of rinderpest occurred in Kenya in 2001.

The key technical breakthrough in this effort involved development of an improved vaccine against rinderpest. The original vaccine was developed at the Kenya Agricultural Research Institute (KARI) laboratories. In 1990, Jeffrey Mariner, a veterinary epidemiologist who at that time was at the Tufts Cummings School of Veterinary Medicine and working with the Africa Union-Inter-African Bureau for Animal Resources (AU-IBAR), improved the vaccine by producing a thermostable version that did not require refrigeration up to the point of use. This allowed vets and technicians to backpack the vaccine into remote war-torn areas, where vet services had broken down and international agencies dared not send personnel. The AU-IBAR led the Pan-African Rinderpest Campaign, which coordinated the efforts that resulted in the eventual eradication of rinderpest from Africa.

Now working in the Nairobi laboratories of at the International Livestock Research Institute (ILRI), Mariner says that just as important as this technological advance was getting the development community to begin to address how people work together. Mariner and his colleagues at AU-IBAR themselves took three innovations as lessons from the rinderpest eradication campaign: (1) community-based vaccination programs, (2) participatory surveillance systems based on local knowledge, and (3) optimized control strategies that target high-risk communities through.

‘We must examine issues from the perspective of each group of stakeholders involved and visualize how proposed changes would affect them,’ says Mariner. ‘The power relationships of the groups also need to be considered. Advocates for change must then craft a new vision for how the various stakeholder groups will function that is sufficiently exciting to get people to risk change.’

Excerpts from the Science article, by Dennis Normille, follow.
'Rinderpest, an infectious disease that has decimated cattle and devastated their keepers for millennia, is gone. The United Nations Food and Agriculture Organization (FAO) announced on 14 October in Rome that a 16-year eradication effort has succeeded and fieldwork has ended.

'“This is the first time that an animal disease is being eradicated in the world and the second disease in human history after smallpox,” FAO Director-General Jacques Diouf said in his World Food Day address in Rome the next day.

'“It is probably the most remarkable achievement in the history of veterinary science,” says Peter Roeder, a British veterinarian involved with FAO’s Global Rinderpest Eradication Programme (GREP) from its launch in 1994 until he retired in 2007. For the veterinarians who participated in the effort, the achievement is particularly poignant. . . .

'One formality remains: The Paris-based World Organisation for Animal Health (OIE) still must complete the certification of a handful of countries as rinderpest free. OIE is likely to adopt an official declaration recognizing the demise of the disease at its May assembly. Meanwhile, animal-disease fighters have already been applying lessons learned from the rinderpest campaign and pondering which animal disease might be the next target for eradication.

'Although nearly forgotten in much of the West, as recently as the early 1900s, outbreaks of rinderpest—from the German for “cattle plague”—regularly ravaged cattle herds across Eurasia, often claiming one-third of the calves in any herd. The virus, a relative of those that cause canine distemper and human measles, spreads through exhaled droplets and feces of sick animals, causing fever, diarrhea, dehydration, and death in a matter of days. It primarily affects young animals; those that survive an infection are immune for life.

'When the virus hit previously unexposed herds, the impact was horrific. In less than a decade after the virus was inadvertently introduced to the horn of Africa in 1889, it spread throughout sub-Saharan Africa, killing 90% of the cattle and a large proportion of domestic oxen used for plowing and decimating wild buffalo, giraffe, and wildebeest populations. With herding, farming, and hunting devastated, famine claimed an estimated one-third of the population of Ethiopia and two-thirds of the Maasai people of Kenya and Tanzania. . . .

'In 1994, when rinderpest was entrenched in central Africa, the Arabian Peninsula, and a swath stretching from Turkey through India and to Sri Lanka, FAO brought together three regional rinderpest-control programs into GREP and set the goal of eliminating the disease by 2010. . . .

'The key technical breakthrough was the recognition that the virus was re-emerging from just a handful of reservoirs that could be the targets of intensive surveillance and vaccination campaigns. In 1990, Jeffrey Mariner, then at Tufts University School of Veterinary Medicine (now the Cummings School of Veterinary Medicine), had developed an improved vaccine that did not require refrigeration up to the point of use. This allowed vets and technicians to backpack vaccine into remote areas. One of the reservoirs was in the heart of war-torn eastern Africa, where vet services had broken down and international agencies dared not send personnel. GREP relied on local pastoralists to track the disease and on trained community animal health workers to administer the vaccine to quell outbreaks.

'. . . The virus was last detected in 2001 in wild buffaloes in Meru National Park in Kenya, on the edge of the Somali ecosystem.

'What comes next? Some veterinary experts question whether the international community is ready to take on another massive eradication campaign, but one disease mentioned as a possible eradication target is peste des petites ruminants (PPR), which is highly contagious and lethal among sheep and goats. Related to the rinderpest virus, the PPR virus has long circulated in central Africa, the Middle East, and the Indian subcontinent and has recently spread to Morocco. . . .'

ILRI's Jeff Mariner is now working on an improved vaccine for this disease.

—-

Read the whole article at Science (registration needed to read the full article): Rinderpest, deadly for cattle, joins smallpox as a vanquished disease, 22 October 2010.

To find out what the eradication of rinderpest means for livestock farmers around the world, listen to the following interview featuring John McDermott, ILRI's deputy director general.

Scientists meet in Ethiopia to broaden market opportunities for Africa’s livestock farmers, including its women farmers

Village women and livestock in Niger

Women and livestock in Niger: Leading scientists in African agriculture are gathering, this week, in Ethiopia, to discuss the challenges and opportunities of commercializing livestock agriculture in Africa (photo credit: ILRI/Mann)

As agricultural leaders across the globe look for ways to increase investments in agriculture to boost world food production, experts in African livestock farming are meeting in Addis Ababa this week to deliberate on ways to get commercialized farm production, access to markets, innovations, gender issues and pro-poor policies right for Africa’s millions of small-scale livestock farmers and herders.

More than 70 percent of Africa’s rural poor are livestock farmers. Each farm animal raised is a rare source of high-quality food, particularly of dietary protein, minerals, vitamins and micronutrients, for these households. Pastoralists, who rely on herding their animal stock to survive in the continent’s dry and otherwise marginalized environments, also make up a significant number of Africa’s population.

‘There is a growing recognition by governments and donors that expanding investment in the agricultural sector is a cornerstone for alleviating poverty and building assets in Africa and other developing regions,’ said Carlos Seré, director general of the International Livestock Research Institute (ILRI).

‘Smart investments targeting the developing world's growing numbers of livestock keepers (who make up about 1 billion people today) is a win-win-win,’ said Seré. ‘Such investments promise not only to greatly increase global food security but also to generate profits for both poor livestock producers and agribusinesses.’

Livestock production today employs more than 1.3 billion people globally. Most African small-scale farmers practice mixed farming systems that combine both crop farming and livestock keeping. Globally, these mixed systems produce the majority of the world’s food staples, including 89 percent of the maize, 91 percent of the rice, nearly 75 percent of the milk and 68 percent of the beef consumed.

Livestock-based enterprises are pathways out of poverty for many people in Africa, for whom animals are a source of nourishing foods and regular incomes. With demand for milk, meat and eggs rising fast in many developing countries, the raising and marketing of animals and animal products also allows many people to take advantage of the new growth opportunities in this sector.

Despite the vibrancy of the livestock sector in Africa, much of the investments in African agriculture for food security to date has focused almost exclusively on crop farming. That is a mistake, says Seré, as are many investments made to boost crop and livestock production systems independently.

A livestock scourge eradicated
This is an opportune time for a meeting of Africa’s leading livestock experts. On 16 October 2010, to mark the United Nations World Food Day, the Food and Agriculture Organization of the United Nations and other world bodies chose to celebrate the eradication of rinderpest from the face of the earth. Probably the most remarkable achievement in the history of veterinary science, this milestone is expected to be announced in mid-2011, pending a review of final official disease status reports from a handful of countries to the World Organisation for Animal Health.

Rinderpest is a viral livestock disease that has afflicted Europe, Asia and Africa for centuries. It killed more than 90 percent of the domesticated animals, as well as untold numbers of people and plains game, in Africa at the turn of the 19th century, a devastation so complete that its impacts are still felt today, more than a century later. The last-known outbreak of rinderpest occurred in Kenya in 2001.

The key technical breakthrough in this effort involved development of an improved vaccine against rinderpest that did not require refrigeration up to the point of use. This allowed vets and technicians to backpack the vaccine into remote war-torn areas where the disease was a major problem. The AU-IBAR led the Pan-African Rinderpest Campaign, which coordinated the efforts that resulted in the eventual eradication of rinderpest from Africa.

Livestock conference to address main constraints to livestock production in Africa
It is against this background that leading scientists in African agriculture are gathering 25–28 October 2010 at the United Nation Conference Centre in Addis Ababa, Ethiopia, to discuss the challenges and opportunities of commercializing livestock agriculture in Africa at the Fifth All African Society of Animal Production.

Carlos Sere at the opening of the AASAP Conference

Carlos Seré, director general of the International Livestock Research Institute, gives a keynote address during the opening of the fifth all African society of animal production (photo credit: ILRI/Habtamu)

Among specific areas to be addressed are livestock trade and markets, pastoralism and natural resource management, animal genetics and commercialization, climate change and its effects on livestock systems, livestock feeds, and the delivery of livestock services to smallholders and herders.

Despite its wealth of livestock resources, Africa produces livestock at relatively low levels, due to a range of technical, socioeconomic and biological challenges faced by smallholders and herders on the continent. These include weak policies and veterinary and other institutions; widespread parasitic, tropical and other livestock and zoonotic diseases; poor-quality feeds; inadequate inputs for livestock production; insufficient access to livestock markets and market information; and low market prices.

‘This conference is addressing policy and strategy gaps that have prevented African livestock producers from making the most of their livestock resources,’ said Tadelle Dessie, a scientist with ILRI. ‘Addressing these gaps should help raise the level of investment in livestock production and improve market access for small-scale livestock producers.’

Fix gender-based problems in livestock livelihoods
One potent way to enable Africa’s farmers and herders to benefit more from livestock production, say many who have researched the topic, is to redress gender imbalances in access to resources for livestock production. ‘Institutional, social and economic gender-based constraints inhibit women’s full participation in livestock markets and marketing,’ says Jemimah Njuki, a scientist with ILRI.

Research shows that many African women already have access to very local markets and that they already participate in different stages of livestock value chains. ‘Helping women access market-related information will help them help raise the continent’s livestock production levels,’ Njuki said, adding, ‘and should allow them to benefit more from their livestock enterprises.’

Watch a short video interview with Carlos Seré: http://www.youtube.com/watch?v=FIFiQJp-WaY

View presentations from the conference: http://www.slideshare.net/tag/esap