New advances in the battle against a major disease threat to cattle and people in Africa

ILRI research on biotechnology to fight a major disease threat to cattle and people in Africa

An 8-month old cloned Boran calf named Tumaini (meaning ‘hope’ in Kiswahili), on the left, is part of a long-term ILRI research project to develop cattle for Africa that are genetically resistant to trypanosomiasis (photo credit: ILRI/Paul Karaimu).

The International Livestock Research Institute (ILRI), a member of the CGIAR Consortium, is a non-profit organization based in Africa. ILRI’s mission is to use the best and safest livestock science available to confront poverty, hunger, and disease in the developing world, where livestock provide livelihoods and food for hundreds of millions of people.

One of ILRI’s most important priorities today is to help poor livestock keepers in Africa deal with the constant threat of a devastating disease called trypanosomiasis. This disease is arguably Africa’s most important livestock disease, wasting and killing cattle, commonly the most important asset of poor households. The human form of the disease is called sleeping sickness, which afflicts tens of thousands of people every year, killing many of them, and putting tens of millions more people at risk.

As part of ILRI’s comprehensive fight against trypanosomiasis, the institute is now in the very early stages of a project to develop disease-resistant cattle, which could save the lives of livestock and people both. Thus far, ILRI and its partners have taken a preliminary step in the process, which involved successfully cloning a male calf from one of East Africa’s most important cattle breeds, the Boran. The calf is healthy and is being raised at ILRI’s research facilities in Kenya.

A next step is to develop a new Boran clone modified with a gene that naturally confers resistance to the disease. This involves using a synthetic copy of a gene sequence originally identified in baboons that should protect cattle against this devastating disease.

A final step will be to use these disease-resistant cattle in breeding schemes that will provide African countries with another option in their fight against trypanosomiasis.

This research potentially offers a reliable, self-sustaining and cost-effective way of protecting tens of millions of African cattle against disease and untimely death, as well as dramatically reducing poverty across Africa. By reducing the reservoir of pathogens, this should also help to save thousands of human lives each year.

It could take up to two decades to develop disease-resistant cattle herds for Africa. ILRI and its partners are also continuing to pursue other options for fighting trypanosomiasis, such as rationale drug treatment and integrated disease control methods.

For ILRI, public safety and animal welfare are paramount; this means working with all the relevant Kenyan and international regulatory authorities to ensure that the highest bio-safety standards are always employed. In line with its commitment to transparency, ILRI places all of its research results in the public domain.

ILRI is working with a team that includes scientists from New York University, along with experts from the Roslin Institute in Scotland, and Michigan State University in the USA. The fundamental research aspects of this project are being funded by the US National Science Foundation.

For further information, see:
ILRI website:
https://www.ilri.org/breadtrypanosome

National Science Foundation:
www.nsf.gov/news/news_summ.jsp?cntn_id=116932

2009 paper published in the Proceedings of the National Academy of Sciences (USA) on original breakthrough in this research project:
http://dx.doi.org/10.1073%2Fpnas.0905669106

Or contact one of the following people:

Jimmy Smith
ILRI Director General
j.smith@cgiar.org

Suzanne Bertrand
ILRI Deputy Director General for Biosciences
s.bertrand@cgiar.org

Steve Kemp
Leader of ILRI’s research on this topic
s.kemp@cgiar.org

About ILRI: better lives through livestock
www.ilri.org
The International Livestock Research Institute (ILRI) works with partners worldwide to enhance the roles that livestock play in food security and poverty alleviation, principally in Africa and Asia. The outcomes of these research partnerships help people in developing countries keep their farm animals alive and productive, increase and sustain their livestock and farm productivity, find profitable markets for their animal products, and reduce the risk of livestock-related diseases. ILRI is a not-for-profit institution with a staff of about 600 and, in 2012, an operating budget of about USD 60 million. A member of the CGIAR Consortium working for a food-secure future, ILRI has its headquarters in Nairobi, Kenya, a principal campus in Addis Ababa, Ethiopia, and offices in other countries in East, West and Southern Africa and in South, Southeast and East Asia.

About CGIAR: working for a food-secure future
www.cgiar.org
CGIAR is a global partnership that unites organizations engaged in research for a food-secure future. It is carried out by 15 centres that are members of the CGIAR Consortium and conducted in close collaboration with hundreds of partner organizations, including national and regional research institutes, civil society organizations, academia and the private sector. The CGIAR’s 8,000 scientists and staff work in the developing world to reduce rural poverty, increase food security, improve human health and nutrition, and ensure more sustainable management of natural resources. With unparalleled research infrastructure and dynamic networks across the globe, and maintaining the world’s most comprehensive collections of genetic resources, CGIAR is the only institution with a clear mandate on science and technology development for the eradication of hunger and poverty at the global level.

Short film illustrates expanded, agile partnerships behind recent disease research breakthrough

This short (5-minute) film, ‘Battling a Killer Cattle Disease’, produced by the International Livestock Research Institute (ILRI), provides background and context for a recent research breakthrough made at ILRI’s animal health laboratories in Nairobi, Kenya, and at their partner institutions in the UK and Ireland. The research was funded over 7 years in large part by the Wellcome Trust in addition to the Consultative Group on International Agricultural Research (CGIAR).

Trypanosomosis is a wasting disease of livestock that maims and eventually kills millions of cattle in Africa and costs the continent billions of dollars annually.

In 2011, a group of geneticists at these collaborating institutions identified two genes that enable Africa’s ancient N’Dama cattle breed to resist development of the disease trypanosomosis when infected with the causative, trypanosome, parasite.

The team members were able to make use of the latest gene mapping and genomic technologies because they had the genetic systems and experimental populations of livestock in place to do so as these technologies came on stream.

Eventually, these results should make it easier for livestock breeders in Africa to breed animals that will remain healthy and productive in areas infested by the disease-carrying tsetse fly.

The international team that came together in this project is an example of the disciplinary breadth as well as agility needed to do frontline biology today. In this work, the team developed several new research approaches and technologies that were needed to unravel some fundamental biological issues, with likely benefits for many African farmers and herders.

Those interviewed in the film include Harry Noyes, at the University of Liverpool; Alan Archibald, at the Roslin Institute at the University of Edinburgh; Andy Brass, at the University of Manchester; and Steve Kemp and Morris Agaba, at ILRI.

New project to reduce chicken disease in Ethiopia

Chicken on LUO RU BIN's farm

A new study of genetic resistance to disease in Ethiopia’s indigenous chicken breeds is scheduled to start later this year. In collaboration with the Ethiopian Institute for Agricultural Research, the University of Liverpool, Roslin Institute, the Univerisity of Edinburgh and the University of Nottingham, researchers from the International Livestock Research Institute (ILRI) will seek to identify ‘the causes of infectious diseases that have a major impact on poultry production in Ethiopia.’

Scheduled to start in September 2010, the study will take place in the district of Jarso, in eastern Ethiopia, and in Horro, in the west of the country. The results of this research will be linked to an ongoing poultry breeding program to improve resistance to ‘priority infectious diseases’ and thereby enhance the productivity of the country’s poultry sector.

Poultry play important economic, nutritional and socio-cultural roles in the livelihoods of poor rural households in Ethiopia and many other developing countries, where birds are widely integrated into smallholder production systems and help households cope with hunger and poverty.

Buying and rearing poultry is often a first step out of poverty. Women tend to own and manage chickens, usually native chicken varieties, which provide them with their only independent source of cash income.

Although breeding programs for local chickens have shown that rapid improvement in productivity is possible, researchers have yet to identify and select the optimal breeds for improving, by, for example, providing resistance to common infectious diseases.

Tadelle Dessie, a team leader of ILRI’s biotechnology theme in Ethiopia, and one of the leaders of the chicken project, says ‘enhanced genetic resistance through selective breeding is still an under-exploited low-cost opportunity for disease control in low-input poultry production systems’. He says the study will investigate genetic variability in the resistance of local chicken ecotypes to major infectious diseases hurting village poultry production in Ethiopia. Results of the research will inform strategies for improving both disease resistance and productivity.

Indigenous chicken varieties are well adapted to local environments, but local birds tend to grow slowly and produce fewer and smaller eggs than commercial varieties. Infectious diseases, however, can wipe out flocks of exotic, higher-producing, poultry.

Knowledge from this study should enable Ethiopian policymakers and animal health professionals to design more precise disease-control plans. The study itself should help improve Ethiopia’s scientific capacity in this field by training local scientists and enhancing laboratory facilities for poultry testing.

Staff are now being recruited for the project, which will be launched in September.