ON RESILIENCE: Kenya’s rainfed food production vulnerable to more droughts and floods and shorter growing seasons

Crop farmer in Western Kenya

Consolata James, a farmer in Western Kenya fighting striga, a ‘witches’ weed infesting her maize crop, will likely face shorter growing days and the arrival of new diseases with rising temperatures due to climate change (photo credit: CGIAR).

A research project on climate change adaptation strategies by smallholder farmers in Kenya, which kicked off in April 2009, has completed its first two reports. Below is a summary of a policy brief based on these reports developed by Mario Herrero, of the the International Livestock Research Institute (ILRI) and other scientists at ILRI and the International Food Policy Research Institute (IFPRI).

Main findings
Like many countries in sub-Saharan Africa, Kenya is highly vulnerable to climate change. The country and greater region already experience high temperatures and low but variable rainfall. Adoption of modern technology is low; poverty remains widespread; and infrastructure is under-developed.

Kenya’s highly variable rainfall is unreliable for rainfed agriculture and livestock production. The rainy seasons can be extremely wet, bringing floods and inundation. Even arid lands that comprise 80 per cent of the country are prone to floods. Therefore, they are prone to flood damages and turn to insurance claims. Visit the site to know more about LMR Public Adjusters and how they can help.

Kenya also experiences major droughts every decade and minor ones every three to four years. The damage caused by these droughts is spreading among the increasingly dense populations in these fragile arid and semi-arid lands, where pastoral communities are increasingly being marginalized.

With agriculture accounting for about 26 per cent of Kenya’s gross domestic product and 75 per cent of its jobs, the Kenyan economy is highly sensitive to variations in rainfall. At the same time, rainfed agriculture is, and will remain, the dominant source of staple food production and the foundation of livelihoods of most of Kenya’s rural poor.

Many parts of Kenya are likely to experience shorter growing periods in future; in some areas, the decreases may be severe. Some of the largest losses and gains are predicted for the country’s arid areas, which have too few growing days for crop production but remain important for pastoralists.

Most climate change scenarios show that four key staple crops in Kenya—maize, wheat, groundnuts, and irrigated rice—will experience country-wide losses due to increased evapotranspiration in large cropland areas while maize and bean production will increase modestly in the Kenyan highlands.

An increase in climate variability, leading to more than one drought every five years, could cause large and irreversible livestock losses in Kenya’s drylands.

Read the whole ILRI-IFPRI policy brief for a Kenyan Smallholder Climate Change Adaptation Project: Climate variability and climate change: Impacts on Kenyan agriculture, October 2010.

Prognosis for African food security in a 4ºC+ warmer world is bleak–Philip Thornton

Philip Thornton, CCAFS/ILRI

Kenya Television Network interviews Philip Thornton on the impacts of climate change to the African continent (photo credit: ILRI).

Bottom line implication: A 4-degree warmer world calls for adaptive capacity in agriculture that is not just about increasing the resilience of current systems but about completely new ways of farming and consuming.

The Guardian this week quotes agricultural systems analyst Philip Thornton, of the International Livestock Research Institute (ILRI), on the severe impacts that a 4ºC rise in temperature, now expected to occur within this century, will have on African livelihoods and food production.

'A hellish vision of a world warmed by 4ºC within a lifetime has been set out by an international team of scientists, who say the agonisingly slow progress of the global climate change talks that restart in Mexico today makes the so-called safe limit of 2ºC impossible to keep. A 4ºC rise in the planet's temperature would see severe droughts across the world and millions of migrants seeking refuge as their food supplies collapse.

'"There is now little to no chance of maintaining the rise in global surface temperature at below 2ºC, despite repeated high-level statements to the contrary," said Kevin Anderson, from the University of Manchester, who with colleague Alice Bows contributed research to a special collection of Royal Society journal papers published tomorrow. "Moreover, the impacts associated with 2ºC have been revised upwards so that 2ºC now represents the threshold [of] extremely dangerous climate change.". . .

'Rachel Warren, at the University of East Anglia, described a 4ºC world in her research paper: "Drought and desertification would be widespread. . . . There would be a need to shift agricultural cropping to new areas, impinging on [wild] ecosystems. Large-scale adaptation to sea-level rise would be necessary. Human and natural systems would be subject to increasing levels of agricultural pests and diseases, and increases in the frequency and intensity of extreme weather events."

'Warren added: "This world would also rapidly be losing its ecosystem services, owing to large losses in biodiversity, forests, coastal wetlands, mangroves and saltmarshes [and] an acidified and potentially dysfunctional marine ecosystem. In such a 4ºC world, the limits for human adaptation are likely to be exceeded in many parts of the world.". . .

'In sub-Saharan Africa, "the prognosis for agriculture and food security in a 4ºC world is bleak", according Philip Thornton, of Kenya's International Livestock Research Institute, who led another research team. He notes there will be an extra billion people populating the continent by 2050.

'"Croppers and livestock keepers in sub-Saharan Africa have in the past shown themselves to be highly adaptable to short- and long-term variations in climate. But the kind of changes that would occur in a 4ºC+ world would be way beyond anything experienced in recent times. It is not difficult to envisage a situation where the adaptive capacity and resilience of hundreds of millions of people could simply be overwhelmed by events," Thornton's team concludes. . . .'

Read the whole article at the Guardian: Climate change scientists warn of 4C global temperature rise, 29 November 2010.

‘The limits of human–and natural systems–adaptations are likely to be exceeded’–Climate change researcher Rachel Warren

A 4-degree C warmer world

Projections of global warming relative to pre-industrial for the A1FI emissions scenario—the one we’re currently on. Dark shading shows the mean ±1 standard deviation for the tunings to 19 AR4 GCMs [IPCC Fourth Assessment General Circulation Models]  and the light shading shows the change in the uncertainty range when . . . climate-carbon-cycle feedbacks . . . are included. Published in a Royal Society special issue on climate change, 29 November 2010 (graphic credit: Philosophical Transactions of the Royal Society Series A, Special Issue, 29 November 2010).

An article in the highly regarded Climate Progress website names a paper by agricultural systems analyst Philip Thornton, of the International Livestock Research Institute (ILRI), titled ‘Agriculture and food systems in sub-Saharan Africa [SSA] in a 4°C+ world’, as one of the more important articles appearing in a current special issue on climate change of the Philosophical Transactions of the Royal Society Series A.

‘”In . . .  a 4°C [warmer] world, the limits for human adaptation are likely to be exceeded in many parts of the world, while the limits for adaptation for natural systems would largely be exceeded throughout the world.”

‘One of the greatest failings of the climate science community (and the media) is not spelling out as clearly as possible the risks we face on our current emissions path, as well as the plausible worst-case scenario, which includes massive ecosystem collapse. So much of what the public and policymakers think is coming is a combination of:

  • The low end of the expected range of warming and impacts based on aggressive policies to reduce emissions (and no serious carbon-cycle feedbacks)
  • Analyses of a few selected impacts, but not an integrated examination of multiple impacts
  • Disinformation pushed by the anti-science, pro-pollution crowd

‘In fairness, a key reason the scientific community hasn’t studied the high emissions scenarios much until recently because they never thought humanity would be so self-destructive as to ignore their warnings for so long, which has put us on the highest emissions path (see U.S. media largely ignores latest warning from climate scientists: “Recent observations confirm … the worst-case IPCC scenario trajectories (or even worse) are being realised”—1000 ppm [A1FI]).

‘A special issue of the Philosophical Transactions of the Royal Society A, “Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications,” lays out this 4°C (7°F) world. Warming of 7ºF is certainly not the worst-case in the scientific literature (see M.I.T. doubles its 2095 warming projection to 10°F—with 866 ppm and Arctic warming of 20°F and “Our hellish future: Definitive NOAA-led report on U.S. climate impacts warns of scorching 9 to 11°F warming over most of inland U.S. by 2090 with Kansas above 90°F some 120 days a year — and that isn’t the worst case, it’s business as usual!”).

‘But for the first time, “A hellish vision of a world warmed by 4ºC within a lifetime has been set out by an international team of scientists,” as the UK’s Guardian describes it:

‘A 4ºC rise in the planet’s temperature would see severe droughts across the world and millions of migrants seeking refuge as their food supplies collapse.

‘These papers began as conference presentations . . . . In a must-read paper that is the source of the top figure, “When could global warming reach 4°C?” Betts et al. drop this bombshell:

‘”Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC’s ‘likely range’.”. . .

‘Another important Royal Society article is the concluding piece, “The role of interactions in a world implementing adaptation and mitigation solutions to climate change,” by Rachel Warren.  She makes a crucial point that is all too neglected in most discussions of adaptation — it is the interaction of impacts that is likely to overwhelm, particularly when you consider the very real risk of eco-system collapse over large parts of the Earth:

‘”… a 4°C world would be facing enormous adaptation challenges in the agricultural sector, with large areas of cropland becoming unsuitable for cultivation, and declining agricultural yields. This world would also rapidly be losing its ecosystem services, owing to large losses in biodiversity, forests, coastal wetlands, mangroves and saltmarshes, and terrestrial carbon stores, supported by an acidified and potentially dysfunctional marine ecosystem. Drought and desertification would be widespread, with large numbers of people experiencing increased water stress, and others experiencing changes in seasonality of water supply. There would be a need to shift agricultural cropping to new areas, impinging on unmanaged ecosystems and decreasing their resilience; and large-scale adaptation to sea-level rise would be necessary. Human and natural systems would be subject to increasing levels of agricultural pests and diseases, and increases in the frequency and intensity of extreme weather events.

‘”In such a 4°C world, the limits for human adaptation are likely to be exceeded in many parts of the world, while the limits for adaptation for natural systems would largely be exceeded throughout the world. Hence, the ecosystem services upon which human livelihoods depend would not be preserved. Even though some studies have suggested that adaptation in some areas might still be feasible for human systems, such assessments have generally not taken into account lost ecosystem services. . . .

‘. . . [T]here are several important articles, like “Agriculture and food systems in sub-Saharan Africa [SSA] in a 4°C+ world,” which concludes:

‘The prognosis for agriculture and food security in SSA in a 4°C+ world is bleak. Already today, the number of people at risk from hunger has never been higher: it increased from 300 million in 1990 to 700 million in 2007, and it is estimated that it may exceed 1 billion in 2010. The cost of achieving the food security Millennium Development Goal in a +2°C world is around $40–60 billion per year, and without this investment, serious damage from climate change will not be avoided. Currently, the prospects for such levels of sustained investment are not that bright. Croppers and livestock keepers in SSA have in the past shown themselves to be highly adaptable to short- and long-term variations in climate, but the kind of changes that would occur in a 4°C+ world would be way beyond anything experienced in recent times. There are many options that could be effective in helping farmers adapt even to medium levels of warming, given substantial investments in technologies, institution building and infrastructural development, for example, but it is not difficult to envisage a situation where the adaptive capacity and resilience of hundreds of millions of people in SSA could simply be overwhelmed by events. . . .

Read the whole article at Climate Progress: Royal Society special issue details ‘hellish vision’ of 7°F (4°C) world—which we may face in the 2060s!, 20 November 2010.

Scientists warn of farm failures and climate migrants in Africa in a 4-plus degree world

Maize farming in Mozambique

Smallholder maize and livestock farm in Pacassa Village, in Tete Province, Mozambique (photo credit: ILRI/Mann).

As climate change negotiations begin this week in Mexico, a new study published in the journal Philosophical Transactions of the Royal Society Series A, examining the potential impact of a four-degree temperature increase on food production in sub-Saharan Africa, reports that growing seasons of much of the region’s cropped areas and rangelands will be reduced in length by the 2090s, seriously damaging the ability of these lands to grow food.

Painting a bleak picture of Africa’s food production in a 'four-plus degree world,' the study sends a strong message to climate negotiators at a time when they are trying to reach international consensus on measures needed to keep average global temperatures from rising by more than two degrees Centigrade in this century. The study calls for concerted efforts to help farmers cope with potentially unmanageable impacts of climate change.

In most of southern Africa, growing seasons could be shortened by about 20 per cent, according to the results of simulations carried out using various climate models. Growing seasons may actually expand modestly in eastern Africa. But despite this, for sub-Saharan Africa as a whole, a temperature increase of five degrees by the 2090s is expected to depress maize production by 24 per cent and bean production by over 70 per cent.

'Africa’s rural people have shown a remarkable capacity to adapt to climate variability over the centuries,' said lead author Philip Thornton, with the Kenya-based International Livestock Research Institute (ILRI), which forms part of the Consultative Group on International Agricultural Research (CGIAR). 'But temperature increases of four degrees or more could create unprecedented conditions in dozens of African countries, pushing farmers beyond the limits of their knowledge and experience.' 

It seems unlikely that international climate policies will succeed in confining global warming to a two-degree increase, and even this will require unprecedented political will and collective action, according to the study.

Many options are already available that could help farmers adapt even to medium levels of warming, assuming substantial investment in new technology, institution building, and infrastructure development, for example. But it is quite possible that the adaptive capacity and resilience of hundreds of millions of people in Africa could simply be overwhelmed by events, say the authors.

The rate of cropping season failure will increase in all parts of the region except Central Africa, according to study results. Over a substantial part of eastern Africa, crops already fail in one out of every four years. By the 2090s, higher temperatures will greatly expand the area where crops fail with this frequency. And much of southern Africa’s rainfed agriculture could fail every other season.

'More frequent crop failures could unleash waves of climate migrants in a massive redistribution of hungry people,' said Thornton. 'Without radical shifts in crop and livestock management and agricultural policies, farming in Africa could exceed key physical and socio-economic thresholds where the measures available cease to be adequate for achieving food security or can’t be implemented because of policy failures.'

'This is a grim prospect for a region where agriculture is still a mainstay of the economy, occupying 60 per cent of the work force,' said Carlos Seré, Director General of ILRI. 'Achieving food security and reducing poverty in Africa will require unprecedented efforts, building on 40 years of modest but important successes in improving crop and livestock production.'

To help guide such efforts, the new study takes a hard look at the potential of Africa’s agriculture for adapting successfully to high temperatures in the coming decades; the study also looks at the constraints to doing so.

Buffering the impacts of high temperatures on livestock production will require stronger support for traditional strategies, such as changing species or breeds of animals kept, as well as for novel approaches such as insurance schemes whose payouts are triggered by events like erratic rainfall or high animal death rates, according to the study.

However, Thornton says that uncertainty about the specific impacts of climate change at the local level, and Africa’s weak, poorly resourced rural institutions, hurt African farmers' ability to adopt such practices fast enough to lessen production losses. Moreover, governments may not respond to the policy challenges appropriately, as demonstrated by the 2008 food crisis, when many countries adopted measures like export bans and import tariffs, which actually worsened the plight of poor consumers.

The study recommends four actions to take now to reduce the ways climate change could harm African food security.

1.     In areas where adverse climate change impacts are inevitable, identify appropriate adaptation measures and pro-actively help communities to implement them.

2.     Go 'back to basics' in collecting data and information. Land-based observation and data-collection systems in Africa have been in decline for decades. Yet information on weather, land use, markets, and crop and livestock distributions is critical for responding effectively to climate change. Africa’s data-collection systems could be improved with relatively modest additional effort.

3.     Ramp up efforts to maintain and use global stocks of crop and livestock genetic resources to help Africa’s crop and livestock producers adapt to climate change as well as to the shifts in disease prevalence and severity that such change may bring.

4.     Build on lessons learned in the global food price crisis of 2007–2008 to help address the social, economic and political factors behind food insecurity.

The CGIAR and the Earth System Science Partnership recently embarked on the most comprehensive program developed so far to address both the new threats and new opportunities that global warming is likely to cause agriculture in the world’s developing countries. The Climate Change, Agriculture and Food Security program assembles relevant experts to work with decision makers at all levels—from government ministries to farmers’ fields—to translate knowledge into effective action.

The ILRI study underlines the urgency and importance of that research. It will inform the discussions of some 500 policy makers, farmers, scientists and development experts expected to attend an ‘Agriculture and Rural Development Day’, on 4 December, which will be held alongside a two-week United Nations Conference on Climate Change taking place in Cancún, Mexico. Participants at the one-day event will identify agricultural development options for coping with climate change and work to move this key sector to the forefront of the international climate debate.

'A four-plus degree world will be one of rapidly diminishing options for farmers and other rural people,' said Seré. 'We need to know where the points of no return lie and what measures will be needed to create new options for farmers, who otherwise may be driven beyond their capacity to cope.'

For more information on the program on Climate Change, Agriculture and Food Security, visit www.ccafs.cgiar.org

With no ‘Marshall Plan’ for transiting to a non-carbon economy, we need research to develop ways to adapt to a warmer world

Setting out to weed a sorghum crop in Niger

A youth sets out with his weeding tool to tend to his family's crop of sorghum in Katanga Village, near Fakara, in Niger (photo credit: ILRI/Mann).

Along with many other major media, Discovery News reported yesterday on a collection of research papers just published that agree that our world is likely to warm by four degrees Centigrade by the end of this century. Among the scientists quoted in these media reports is agricultural systems analyst Philip Thornton, of the International Livestock Research Institute (ILRI), on what the likely impacts will be on agriculture in sub-Saharan Africa. The researchers concur that research to develop new means to adapt to a warmer world are critically needed. Publication of these science papers comes at the start of the United Nations Climate Change Conference being held in Cancún, Mexico.

'Since the late 1990s, many researchers and policy makers have held a two-degree Celsius (3.6-degree Fahrenheit) global temperature increase relative to pre-industrial times as a benchmark limit for global warming, saying that keeping warming below this threshold increases the likelihood that catastrophic changes can be avoided.

'But we are hardly on track to meet that target, researchers say, and an average global warming of four degrees Celsius (7.2 degrees Fahrenheit) by the end of this century is more likely than two.

'In a collection of papers published today in the Philosophical Transactions of the Royal Society A, researchers paint a picture of what a four-degree warmer world might look like, including changes in agriculture and water supply, ecosystems, sea level rise and the displacement of populations.

'"People are talking about two degrees but the chances of actually delivering on that are pretty slim," said Mark New of Oxford University, United Kingdom, one of the researchers who compiled the collection.

'"If we had a kind of a Marshall Plan to transform every major economy to a non-carbon based economy over the next 15 years, it's doable. But that's not going to happen. A lot of work suggests that the most likely outcome is between three and four (degrees increase) with it very likely to be more than four."

'Four degrees would only be a global average. Air over land will warm more than over the oceans, and some places will warm more than others.

'Dry areas are likely to get drier, according to a study of water supply done by New and others, which could have severe implications for agriculture.

'A team led by [Philip] Thornton of the International Livestock Research Institute used models to project the effect of a four-degree temperature increase on crop production in sub-Saharan Africa.

'"The rate of crop failure in southern Africa increases to nearly one in every two years," New said of the study. "You can't continue to rely on your existing crops or practices. There's going to have to be some kind of a transformation."

'"Most of these countries have low capacity to adapt," he added. . . .

'"Some of the impacts could be overcome if society takes adaptive action, but the difference between adapting at two degrees and at four degrees is very different," New said. "There needs to be research into technologies to assist adaptation just as much as we need research into technology for moving out of a carbon based transportation system." . . .'

Read the whole article at Discovery News: The world: Four degrees warmer, 29 November 2010.

Read Philip Thornton’s science paper in Philosophical Transactions of the Royal Society AAgriculture and food systems in sub-Saharan Africa in a 4 ° C + world, 29 November 2010.

Helping African herders cope with climate change

The worm-resistant red Maasai sheep of East Africa

Research groups at the International Livestock Research Institute (ILRI) are helping Maasai livestock herders in East African to retain their native 'hairless' (non-wool producing) red Maasai sheep, which are genetically resistant to infections with gastro-intestinal worms (photo credit: ILRI). 

Half of the world's livestock herders live with their animals on the vast rangelands of Africa, which comprise half of Africa's surface. Herders have always adapted to variable weather, but over the next 50 years, pastoralist areas will face more and more changes.

What’s the future for Africa’s 50 million livestock herders who live on lands too marginal for cropping as our climate changes, becomes less predictable, heats up? How can scientific research help remote pastoral communities? 

Among the poorest of the world’s poor, herders supply milk and meat not only for themselves but for large numbers of other poor people. Although their animals produce few of the greenhouse gasses harming the earth, these people will be among those most hurt by the climate changes we expect. 

Population growth and land degradation are already causing problems over much of the continent’s traditional rangelands. Many herders, having lost all their animals to droughts, are facing the end of their way of life. 

Research-based approaches for adapting to climate change, however, offer options that can help herding communities sustain at least some aspects of their pastoral livelihoods.

These options include:

  • using satellite imagery to provide the first-ever drought insurance for pastoral herders in Africa's remote regions
  • cross-breeding an indigenous disease-resistant sheep breed kept by Maasai communities with higher-producing exotic sheep to get the benefits of both
  • helping communities shift from keeping grazers, such as cattle and sheep, to browsers, such as camels and goats
  • supporting pastoralists to take advantage of local opportunities, such as shifting from herding ruminant animals to raising fish in ponds.  

The experiences in this film, alongside other initiatives will be presented by Mario Herrero, a scientist with ILRI, at the 2010 United Nations Climate Change Conference in Cancun, Mexico from 29 November to 10 December 2010, to show how ILRI is applying research to help livestock-based communities cope with the effects of climate change.

Watch this new 10-minute ILRI film, Heat, Rain and Livestock: Impacts of Climate Change on Africa's Livestock Herders, to find out more.

See more of ILRI's films.

Find out more about the 2010 United Nations Climate Change conference.

See related article: New partnership launched to keep climate change from crippling food production in Africa and Asia, 19 November 2010.

New partnership launched to keep climate change from crippling food production in Africa and Asia

Fishermen and goats at the Niger River

In much of sub-Saharan Africa and south Asia, people rely on both crops and animals for their livelihoods; to cope with a warmer and more variable climate, these farmers will need crop varieties and livestock breeds that can withstand droughts and floods and new diseases; where cropping becomes risky, people will rely more on their livestock than on their crops to feed themselves and make a living; on drying rangelands, many people will switch from cattle- and sheep-keeping to goats and camels, which can remain productive where there is scarce feed and water (photo credit: ILRI/Mann).

A new research program on 'Climate Change, Agriculture and Food Security' (CCAFS) was launched this week.

It will link much of the best climate-related agricultural research for development work going on at the International Livestock Research Institute (ILRI) and 14 other centres in the Consultative Group on International Agricultural Research (CGIAR) with the best global environmental change research being undertaken within the global Earth System Science Partnership.

ILRI is a key partner in this initiative, hosting the new program’s facilitator for the East Africa region, James Kinyangi. ILRI is also home to two CCAFS scientists-–Philip Thornton, who leads the ‘Integrating Knowledge for Decision Making’ theme at CCAFS, and Wiebke Foerch, an agricultural and social scientist working on food security, vulnerability and resilience of smallholders to global change. In addition, Mario Herrero, who leads ILRI’s Sustainable Livestock Futures research area, has been instrumental in supporting CCAFS as it makes the challenging transition from a CGIAR Challenge Program as originally envisioned, to this innovative and large new research program of the Consortium of International Agricultural Research Centres.

This new program is the most comprehensive to date seeking to ensure that food security is not crippled by climate change. The leaders of the new program say that urgent action is needed to help poor people adapt to climate shifts that have ominous implications for Africa and Asia.

Amidst growing alarm that climate change could deal a catastrophic blow to food security in poor countries, a partnership of the world’s premiere experts on agriculture, climate, and the environment today announced an intensive global response to confront the impacts of shifting weather patterns on crop and livestock production and their dire consequences for food security.

By 2020, the effort aims to reduce poverty by 10 per cent in the targeted regions; reduce the number of rural poor who are malnourished by 25 per cent; and help farmers in developing countries contribute to climate change mitigation by either enhancing storage or reducing greenhouse gas emissions by an amount equivalent to 1,000 million tons over a decade, compared with a 'business-as-usual' scenario.

The CCAFS program will be formally launched on 4 December at Agriculture and Rural Development Day at a United Nations climate change meeting. It is the most comprehensive effort undertaken thus far to address the interactions between climate change and food security, livelihoods and environmental management. Emerging from new collaboration between the CGIAR and the Earth System Science Partnership (ESSP), the program brings together strategic research carried out by the CGIAR, ESSP and their respective partners in a collective effort to be coordinated by the Colombia-based International Center for Tropical Agriculture (CIAT).

The launch of CCAFS marks the beginning of a long-term endeavor with an initial 3-year budget totaling US$206 million. By building on current research for development and funding and by attracting new scientific collaboration and financial support, the program will go far toward its goal of achieving sustainable food security in the face of climate change.

Research finds that stressed agriculture systems in Africa are highly vulnerable, with studies predicting climate shifts could dramatically reduce crop yields and incomes with smallholder farmers in struggling developing countries bearing the brunt of the impact. In Asia, there are studies warning of changes in monsoon, glacier and snowmelt in areas already facing stiff competition for water resources. In Asia’s populated and intensely-farmed coastal zones, rising sea levels threaten the viability of fertile croplands.

CCAFS partners will identify and test climate change adaptation and mitigation practices, technologies, and policies that are suitable for poor, smallholder farmers and other stakeholders affected by climate change.

They will also identify 'hot spots' where intervention is urgent and conduct vulnerability assessments. In addition, they will refine models that predict the impacts of a changing climate on agriculture and livelihoods, and identify ways to select crop varieties and livestock breeds with essential traits and novel farming and food systems suitable for future climate conditions.

Partners will further help farmers deal with changes in plant, pest and disease pressures, which are particularly likely in areas where temperatures are rising, and—in collaboration with other critical actors in the food system—they will conduct research on adaptation and mitigation policies that can enhance food security.

Much of the work on the ground will begin in 2011 with an initial focus on East and West Africa and the agricultural regions of south Asia known as the Indo-Gangetic Plain.

Early 'wins' include securing a major role for agriculture in the post-2012 international climate change regime and establishing a global network of data collection sites that can help identify options for adapting to climate change.

To be held alongside the United Nations Conference on Climate Change taking place in Cancún, Mexico, Agriculture and Rural Development Day will convene some 500 policymakers, farmers, scientists and development experts who will seek to identify climate change solutions in agriculture and move this key sector to the forefront of international climate debate.

QUOTES
LE PAGE: 'Farmers have shown a remarkable ability over the centuries to adapt to climate uncertainty, but rapidly rising temperatures and associated unpredictable weather could push more vulnerable small farmers beyond their current ability to cope with the coming changes in crop cycles and in disease, insect and weed pressures,' said Lloyd Le Page, chief executive officer of the Consortium of International Agricultural Research Centres. 'That’s why we’re bringing together the world’s best scientists, and finding new ways for them to work together with farmers and decision-makers to deliver innovation and knowledge that will help solve these challenges.'

ANDERSEN: 'This new collaborative program represents a bold and innovative response to the challenge of adapting agriculture to climate change and variability while realizing the opportunities open to farmers for mitigating global warming,” said Inger Andersen, CGIAR Fund Chair and Vice President for Sustainable Development at the World Bank. 'It goes far beyond current activities, marking a new phase in our efforts to cope with climate change in agriculture through cutting- edge collaborative science.'

CAMPBELL: 'The CGIAR centers have always worked to help farmers in poor countries cope with challenging conditions by providing drought-tolerant crops or better soil and water management strategies,' said Bruce Campbell, CCAFS Director. 'But climate change threatens to alter growing conditions so rapidly and dramatically as to require an intensive effort that draws on the combined talents of all of our centers and partners. We want to bring a sense of urgency to finding and implementing solutions and attracting more support for this effort.'

LEEMANS: 'The collaboration between the CGIAR scientists and the ESSP scholars is unique in bringing together two different and separate but highly skilled research communities that cover basic and applied research on development, sustainability and environmental change,' said Rik Leemans, chair of the scientific steering committee of the ESSP. 'Sharing and joining our resources will unquestionably result in innovative ways to mitigate and adapt to climate change and simultaneously provide successful incentives to advance development.'

Listen to a news conference with the leaders of the CCAFS program.

Visit the CCAFS website and blog.

ABOUT CCAFS
The program on Climate Change, Agriculture and Food Security (CCAFS) is a strategic partnership of the Consultative Group on International Agricultural Research (CGIAR) and the Earth System Science Partnership (ESSP). CCAFS brings together the world’s best researchers in agricultural science, development research, climate science, and Earth System science, to identify and address the most important interactions, synergies and tradeoffs between climate change, agriculture and food security. For more information, visit www.ccafs.cgiar.org.

ABOUT CGIAR
The Consultative Group on International Agricultural Research (CGIAR) is a global partnership that unites organizations engaged in research for sustainable development with the funders of this work. The funders include developing and industrialized country governments, foundations, and international and regional organizations. The work they support is carried out by 15 members of the Consortium of International Agricultural Research Centers, in close collaboration with hundreds of partner organizations, including national and regional research institutes, civil society organizations, academia, and the private sector. www.cgiar.org – http://cgiarconsortium.cgxchange.org.

ABOUT ESSP
The Earth System Science Partnership (ESSP) was established in 2001 to promote cooperation for the integrated study of the Earth system, the changes that are occurring to the system and the implications of these changes for global sustainability. Brings together global environmental change researchers worldwide, the ESSP comprises four international global environmental change research programmes: DIVERSITAS, specialising in biodiversity and agro- biodiversity; the International Human Dimensions Programme on Global Environmental Change (IHDP), specialising in institutional, socioeconomic and human security issues related to global environmental change and the policies to address it; the International Geosphere–Biosphere Programme (IGBP), specializing in the physical, chemical and biological processes that define Earth system dynamics; and the World Climate Research Programme (WCRP), specializing in climate science.

Joint efforts needed to help Nepalese livestock owners combat climate change

Why is climate change so important to agriculture-based countries?

Slide from ILRI presentation made at Nepal livestock and climate change workshop in October 2010: 'Adapting livestock systems to climate change in South Asia,' by Mario Herrero, Philip Thornton and Iain Wright (Graphic credit: de Jong 2005, World Bank 2005).

Participants in a workshop on livestock and climate change held last week in Kathmandu, Nepal, have called for greater collaboration in work to help Nepalese livestock producers adapt to climate change.

At the opening session of a ‘Consultative Technical Workshop on Climatic Change: Livestock Sector Vulnerability and Adaptation in Nepal’, held 28–29 October 2010, Iain Wright, regional representative for Asia at the International Livestock Research Institute (ILRI), said that the challenges of climate change in Nepal were too great for any one organization to tackle on its own.

‘Researchers’, Wright said, ‘must work more closely with governmental, non-governmental and international organizations, as well as with aid agencies and local communities, to help Nepal reduce the vulnerability of its livestock sector, and the many people who depend on it, to climate change.

Nepal, a landlocked Himalayan country with a human population 27 million, is ranked as one of the world’s poorest countries (142 of 147) by the recent Human Development Report, with one-third of the population living below the poverty line and a per capita annual income of just US$250. More than three-quarters of the population (85%) lives in rural areas and the agricultural sector employs 66% of the labour force and contributes 38% of the country’s gross domestic product.

A ‘Climate Change Vulnerability Index’ compiled by a UK-based firm, Maplecroft, has recently placed Nepal as the world’s fourth most vulnerable country to climate change, while the country produces less than 0.025% of the global greenhouse gas emissions.

Recent climate change scenarios suggest that mean temperatures in parts of Nepal are likely to rise faster than the global average, especially at higher altitudes, leading to less snow and ice. Farmers in the mountains are already feeling the effects of the higher temperatures. More climatic variability and extreme climatic events, including floods and droughts, are expected in future. Researchers anticipate an overall increase in precipitation in the region’s wet season, but a decrease in precipitation in the mid-latitude hills. Nepal’s relatively low rates of development render its population particularly vulnerable to these ongoing and future climate changes.

Nepal’s Minister for Agriculture and Cooperatives, Mrigendra K Singh Yadav, told the workshop participants that measures to adapt to climate change are necessary to protect the country’s many small-scale farmers. Tek Gurung, Director of Livestock and Fisheries with the Nepal Agricultural Research Council, called the workshop ‘a milestone’.

‘This is the first time that the main stakeholders in Nepal’s livestock development have come together with international organizations to assess the vulnerability of the livestock sector to climate change and to determine ways to increase the sector’s resilience,’ Gurung said.

‘While Nepal’s contribution to global greenhouse gas emissions is trivial’, Wright explained, ‘it is one of the countries that will be affected most by climate change. Therefore, it does not make sense for Nepal to devote its scarce resources to research on ways to mitigate the effects of agriculture on climate change.’

‘Rather’, Wright said, ‘we urgently need to develop strategies that will allow poor Nepalese farmers and herders, who are among most vulnerable people in the world, to cope with changes in climate. We know the livestock sector will be affected by these changes, but there is a dearth of information and data on exactly what those consequences will be.'

The workshop was organized by the Nepal Agricultural Research Council in partnership with ILRI; Local Initiatives for Biodiversity, Research and Development (a non-governmental organization in Nepal); and Heifer Project International–Nepal.

See the slide presentation made at the workshop by ILRI scientists Mario Herrero, Philip Thornton and Iain Wright: Adapting livestock systems to climate change in South Asia.

Placing ecosystems thinking at the heart of global food security

Rajasthan goats (Renoje Village)

Goat herd resting before going out for a day's grazing in Renoje Village, 1.5 hours drive south from Udaipur, in southern Rajasthan. ILRI scientists are conducting case studies on the use of stover and other crop wastes for feeding ruminant farm animals in India and Bangladesh. The residues of grain crops after harvesting, which make up more than half the feed for camels, cattle, buffaloes, goats and sheep, are vital to animal husbandry in these and many other developing countries (photo by ILRI/MacMillan).

Placing ecosystems at the heart of food security efforts can improve the productivity, resiliency and long-term sustainability of food supply systems. This is one of the key messages emerging from a new multidisciplinary collaboration led by the United Nations Environment Programme.

The collaboration brings together organizations working in the fields of livestock, fisheries, environment, water and agriculture to synthesize knowledge into options to alleviate hunger.

Ecosystems provide food both in its natural state (e.g., capture fisheries, forest products) and in more managed landscapes (e.g., crop systems, livestock, aquaculture). Climate change and overexploitation, especially of water resources, threaten the productivity of ecosystems. And because most of the world’s poor are directly dependent on both natural and managed ecosystems for food, they are the most vulnerable to environmental degradation and climate-related shocks.

Ecosystems also provide a host of services fundamental to food and water security. In particular, many ecosystems provide water management functions that are crucial to a stable food supply—these include water storage, purification and regulation functions as well as flood control. Ecosystems also need water to support their functioning, but many countries currently don't consider ecosystems a water user at all, much less a 'privileged' water user.

To keep up with food demand, water withdrawals from rivers and lakes will have to increase by an estimated 70–90% by 2050 and large tracts of forest and grassland will have to be converted to agriculture. The ecological fall-out from such a course of action would be catastrophic. Continued decreases in ecosystem services have already begun to hurt agricultural productivity.

Only by treating healthy ecosystems as fundamental to healthy food systems will it be possible to create systems that are not only more sustainable, but also more productive, resilient and diverse.

What this will take
(1) Shift the focus of agricultural development from protecting discrete ecosystems to managing larger landscapes.
Address these larger landscapes as bundles of interlinked services and ecosystems supporting food production. Expand the role of ministries of environment in bringing ecosystem services to the forefront of food security policy and planning.

(2) Ensure water for ecosystems and ecosystems for water.
Adequately value ecosystems services when allocating resources and planning water and land development. Avoid making unintended tradeoffs—particularly those that harm food and water security. Consider quality as well as quantity requirements of different water users to reveal options for reducing fresh-water withdrawals from the environment and getting more benefit per drop.

(3) Do more than improve 'water efficiency' in agriculture.
Without attending to allocation of water 'saved' to downstream ecosystems, improving water efficiency can end up doing more harm than good. Widen the focus on crop-based systems to include forests, livestock and fish. Place greater emphasis on managing water stored in the soil profile.

These three recommendations are described in detail in a forthcoming report, 'Ecosystems for water and food security', whose development was coordinated by the International Water Management Institute. Contributors to the report include: the Arava Institute for Environmental Studies, the Convention on Biological Diversity, the Challenge Program on Water and Food, EcoAgriculture Partners, the Interdisciplinary Centre for Environment and Society at the University of Essex, the International Livestock Research Institute (ILRI), the Institute for Land, Water and Society at the Charles Sturt University, the International Soil Reference and Information Centre–World Soil Information, the Participatory Ecological Land Use Management Association, the Stockholm Environment Institute, The Nature Conservancy, the UNEP-DHI Centre for Water and Environment, WorldFish, the Wageningen University and Research Centre.

A flyer with this information, Emerging Thinking on Ecosystems, Water and Food Security, is being distributed at a side event organized for Tuesday, 2 November 2010, 1–3pm, by UNEP and Global Water Partnership—'Green economy: Promote water as a key element for sustainable national development'—at a Global Conference on Agriculture, Food Security and Climate Change being held in The Hague from 31 October to 5 November 2010.

Other livestock-related side events of interest include the following:
>>> Tue, 2 Nov 2010, 1–3pm: 'Livestock and climate change' organized by the Food and Agriculture Organization of the United Nations
>>> Wed, 3 Nov 2010, 6–8pm: 'Livestock, climate change and food security' organized by the ETC Foundation, Heifer International and other groups
>>> Fri, 5 Nov 2010, 1–3pm: 'CGIAR Program on Climate Change, Agriculture and Food Security' organized by the Consultative Group on International Agricultural Research

Nairobi Science and Policy Forum holds roundtable discussions at ILRI’s Nairobi campus

4th Meeting of the Nairobi Science and Policy Forum held at ILRI, Nairobi Campus on 21Sept 2010

The International Research Livestock Institute hosted the 4th meeting of the Nairobi Science and Policy Forum on Tuesday, 21 September 2010. This Forum takes advantage of a unique location of several science and policy organizations, including the United Nations Environment Programme and CGIAR Centres like ILRI that belong to the Consultative Group on International Agricultural Research, in Nairobi. Members are building case studies and scenarios for policy briefs based on the best scientific evidence as well as networking among like-minded stakeholders to advance the objectives of the Forum.

The topic of discussion at this 4th meeting was ‘Drivers of change in crop-livestock systems and their potential impacts on agro-ecosystems services and human well-being to 2030’, presented by Mario Herrero, leader of the Sustainable Livestock Futures group at ILRI. His team is assessing the trade-offs in using environments for ecosystem services or to produce food and income. Its aim is to support and guide policies and investment strategies and to improve agricultural livelihoods and environmental resilience. This group will address issues of policies, institutions and political ecology, including gender, power relations and access to ecosystem services. It will consider drivers of change such as global trade, urbanization, climate change and energy demand.

While membership is not closed to organizations that are not based in Nairobi, a key characteristic of the Forum is that it will be a venue for face-to-face dialogue and consensus among organizations engaged in science and policymaking in the arena of agriculture and the environment. It is expected that membership will continue to evolve and increase.

Index-based livestock insurance project in northern Kenya wins best practice award

Andrew Mude of ILRI receives IBLI award

Andrew Mude of ILRI receives the best-practice award for the Index-based Livestock Insurance project from Manfred Wiebelt, the director of PEGnet (Photo: PEGnet) 

The International Livestock Research Institute (ILRI) led Index-based Livestock Insurance (IBLI) project in northern Kenya, which provides livestock insurance to over 2000 households in Marsabit district to help livestock herders sustain their livestock-dependent livelihoods during drought, has received a best-practice award from the Poverty Reduction, Equity and Growth Network in recognition of the project’s innovative approach of combining scientific research and practice.

The award was presented to Andrew Mude, an economist with ILRI, who also heads the Index-based Livestock Insurance project, during the Poverty Reduction, Equity and Growth Network’s conference ‘Policies to Foster and Sustain Equitable Development in Times of Crises’ held in Midrand, South Africa, on 2-3 September 2010.

Over the past two years, ILRI in collaboration with partners from Cornell University, the BASIS I4 project at the University of California – Davis, and Syracuse University, have come up with a research program that has designed and developed the insurance program. It is now being implemented by commercial partners as a market-led index-based insurance product that is protecting livestock keepers from drought-related animal losses particularly in the drought-prone arid and semi arid areas of Kenya. The program uses satellite imagery to determine and predict potential losses of livestock forage and issue insurance payouts to participating members when incidences of drought occur.

The first pilot product of this project, launched in January 2010 in Marsabit, brings together Equity Bank of Kenya, UAP Insurance and Swiss-Re as commercial partners who are running a commercially viable insurance product. This is a first-of-its-kind initiative in Africa and it holds enormous potential for benefitting livestock keepers in the region and across the continent. So far, the project has recorded over 2000 contracts covering livestock worth over US$1 million and attracting premiums of over US$77,000.

The project is expected to bring economic and social benefits to livestock keepers and protect households against drought-induced livestock losses thereby reducing their likelihood of descending into poverty. By insuring the assets of pastoralists against catastrophic losses, members will be able to come out of poverty, be protected from the risk of falling into poverty and at the same time will have opportunity to explore other activities for household economic development.

The impact of the project is currently under assessment to find out its benefits before it can be scaled up to other districts in the country. 

The Poverty Reduction, Equity and Growth Network brings together researchers with an interest in issues revolving around poverty, inequality and growth in developing countries and links them to German development policy bodies with the aim of among others, using research results for policy advice on pro-poor growth strategies.

More information about the Index-based Livestock Insurance project can be found on the project website: www.ilri.org/ibli/

The following ILRI news article shares information about the project’s launch in Marsabit:  https://newsarchive.ilri.org/archives/1440

To find out more about the Poverty Reduction, Equity, and Growth Network’s 2010 conference please visit http://www.pegnet.ifw-kiel.de/

Greener pastures and better breeds could reduce carbon ‘hoofprint’

Baoshan Community Dairy Feeding Centre

Cows at the Boashan Community Dairy Feeding Centre, in Yunnan Province, China (photo credit: ILRI / Mann).

A new study by the International Livestock Research Institute (ILRI) finds reductions in greenhouse gasses could be worth a billion dollars to poor livestock farmers if they could sell saved carbon on international markets.

Greenhouse gas emissions caused by livestock operations in tropical countries—a major contributor to climate change—could be cut significantly by changing diets and breeds and improving degraded lands, according to a new study published today in the U.S. Proceedings of the National Academy of Sciences. And as an added bonus, scientists found the small changes in production practices could provide a big payoff by providing poor farmers with up to US$1.3 billion annually in payments for carbon offsets.

'These technologically straightforward steps in livestock management could have a meaningful effect on greenhouse gas build-up, while simultaneously generating income for poor farmers,' said Philip Thornton, of ILRI, who co-authored the paper with ILRI’s Mario Herrero.  

Livestock enterprises contribute about 18% of the world’s greenhouse gases, largely through deforestation to make room for livestock grazing and feed crops, the methane ruminant animals give off, and the nitrous oxide emitted by manure. Many worry these greenhouse gas emissions could grow due to increased livestock production to meet surging demand for meat and milk in developing countries.

Thornton and Herrero believe there are options readily available to prevent up to 417 million tons of carbon dioxide expected to be produced by livestock in tropical countries by 2030—a sum representing a savings of about 7% of all livestock-related global greenhouse gas emissions.

'Of course,' says Thornton, 'if we also manage to bring down consumption of meat and milk in rich countries, the amount of carbon saved will be even greater.' The difference between livestock production in rich and poor countries is a big concern to Thornton. 'We conducted this study to try to disentangle some of the complexities surrounding livestock systems, particularly those in developing countries. Livestock systems are not all the same, and there are large differences in their carbon footprint, their importance for the poor, and their mitigation potential.'

Most reductions of livestock-produced greenhouse gases would have to come from the more than half a billion livestock keepers in tropical countries. But the study finds that these struggling farmers could be motivated to adopt more climate-friendly practices.

'It would be a useful incentive if these farmers were allowed to sell the reductions they achieve as credits on global carbon markets,' Thornton said. 'We found that at US$20 per ton—which is what carbon was trading for last week on the European Climate Exchange—poor livestock keepers in tropical countries could generate about US$1.3 billion each year in carbon revenues.' Although carbon payments would not amount to a lot more income for each individual farmer (such payments might represent an increase in individual income of up to 15%), such payments should provide a tipping point for many smallholders considering intensifying their livestock production.

According to the ILRI study, livestock-related greenhouse gas reductions could be quickly achieved in tropical countries by modifying production practices, such as switching to more nutritious pasture grasses, supplementing diets with even small amounts of crop residues or grains, restoring degraded grazing lands, planting trees that both trap carbon and produce leaves that cows can eat, and adopting more productive breeds.

'We wanted to consider the impact in tropical countries because they are at the epicentre of a livestock revolution,' said Herrero. 'We expect consumption of milk and meat to roughly double in the developing world by 2050, which means it’s critical to adopt sustainable approaches now that contain and reduce the negative effects of livestock production, while allowing countries to realize the benefits, such as better nutrition and higher incomes for livestock-producing households.'

Herrero and Thornton said that changing diets and breeds could increase the amount of milk and meat produced by individual animals, thus reducing emissions because farmers would require fewer animals. For example, in Latin America, they note that switching cows from natural grasslands to pastures sown with a more nutritious grass called Brachiaria can increase daily milk production and weight gain by up to three-fold. This increase, they said, means fewer animals are needed to satisfy demand. In addition, Brachiaria also absorbs, or 'sequesters,' more carbon than degraded natural grasslands.

'Even if only about 30% of livestock owners in the region switch from natural grass to Brachiaria, which is what we consider a plausible adoption rate, that alone could reduce carbon dioxide emissions by about 30 million tons per year,' Thornton said.

Herrero and Thornton also said that, for a given level of demand, fewer animals would be needed if more farmers supplemented grazing with feed consisting of crop residues (often called 'stover'), such as the leaves and stalks of sorghum or maize plants, or with grains. In addition, they note there is the potential to boost production per animal by crossbreeding local with genetically improved breeds, the latter of which can provide more milk and meat than traditional breeds while emitting less methane per kilo of meat or milk produced.

Planting trees that have agricultural and feed uses, a practice known as 'agroforestry,' has the benefit of reducing feed costs for animals, while the trees themselves absorb carbon. Herrero and Thornton found that of the 33 million tons of carbon dioxide that could be reduced through wider use of agroforestry in livestock operations, almost two-thirds of it—72%—would come from the 'carbon sequestration' effects of the trees.

Carols Seré, ILRI’s Director General, said Thornton and Herrero’s work usefully steers the discussion of livestock’s contribution to climate change from blunt criticism of the impact of farm animals to meaningful efforts to address the environmental consequences of their increased production.

'There is a tendency today to simply demonize livestock as a cause of climate change without considering their importance, particularly for poor farmers in the developing world,' Seré said.

'Most of the farmers we work with have a relatively small environmental footprint,' he added, 'and they are intensely dependent on their animals for food, for income, and even as "engines" to plough their fields and transport their crops. What these farmers need are technological options and economic incentives that help them intensify their production in sustainable ways. Carbon payments would be a welcome additional incentive inducing such changes in smallholder livestock production.'

Key messages from the publication
(1) The impact of any given livestock intervention on mitigating total greenhouse gas emissions will be small.
To make a difference, we will need to implement many interventions and do so simultaneously. Mitigating the impacts of livestock systems on climate change will require taking a series of small incremental steps and implementing a wide range of different mitigation strategies to reduce carbon dioxide, methane and nitrous oxide emissions.

(2) We should aim for fewer, better fed, farm and herd animals.
Apart from strategies to sequester greater amounts of carbon, all strategies for mitigating greenhouse gases appear to require the intensification of animal diets and a reduction in animal numbers to produce the same volume of meat and milk.

(3) Ways to mitigate greenhouse gases in tropical livestock systems are technologically straightforward.
Apart from strategies to sequester carbon, all strategies for mitigating greenhouse gas emissions tested could be implemented at farm level with the appropriate economic and other incentives for resource-poor farmers.

(4) GHG mitigation strategies can be pro-poor.
Paying small-scale livestock farmers and herders for practices that help sequester carbon (under REDD or similar incentive schemes), although not trivial in management terms, would help smallholders generate greater and more diversified incomes.

(5) Mitigation strategies can also support strategies to help smallholders adapt to climate change.
Some interventions aiming to reduce greenhouse gases will also serve to help people cope with more unpredictable and extreme weather.

(6) All strategies will need to include appropriate incentives for smallholders.
A major incentive for small-scale livestock producers to change their production practices will be the increasing demand for livestock products in developing countries. But many smallholders will also need other economic incentives and more user-friendly technologies in order to make even straightforward changes in their production practices. 

Read the whole paper at the Proceedings of the National Academy of Sciences: The potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics, 6 September 2010.