Genebanks needed to save farm animal diversity of the South—and assure the world’s future food supply

Carlos Sere amongst farm animals

Opinion piece in SciDev.net by Carlos Seré, Director General ILRI

Today, scientists are reconstructing the genomes of ancient mastodons, found in the frozen north. Dreams of resurrecting lost species rumble in the collective imagination. At the same time, thousands of still-existing farm animal breeds—nurtured into being by generations of farmers attuned to their environments—are slipping into the abyss of extinction, below the wire of awareness.

Livestock genetic diversity is highly threatened worldwide, but especially in the South, where the vast majority of remaining diversity resides. This diversity—of cattle, goats and sheep, swine and poultry—is as essential to the future world food supply as is the crop diversity now being stored in thousands of collections around the world and in a fail-safe crop genebank buried in the Arctic permafrost. But no comparable effort exists to conserve the animals or the genes of thousands of breeds of livestock, many of which are rapidly dying out.

Hardy and graceful Ankole cattle, raised across much of East and Central Africa, are being replaced by black-and-white Holstein-Friesian dairy cows and could disappear within the next 50 years. In Viet Nam, the percentage of indigenous sows declined from 72 per cent of the total population in 1994 to only 26 per cent just eight years later. In some countries, national chicken populations have changed practically overnight from genetic mixtures of backyard fowl to selected uniform stocks raised under intensive conditions.

Some 20 per cent of the world’s 7,616 breeds of domestic livestock are at risk, according to the Food and Agriculture Organization of the United Nations. And change is accelerating. Holstein-Friesian dairy cows are now raised in 128 countries in all regions of the world, and an astonishing 90 per cent of all cattle in the North are of just six tightly defined breeds.

Most endangered livestock breeds are in developing countries, where they are herded by pastoralists or tended by farmers who grow both crops and livestock on small plots of land. With survival a day-to-day issue for many of these small-scale farmers, they are unlikely to make conservation of their rare breeds a priority, at least not without significant assistance. From Africa to Asia, farmers of the South, like the farmers of Europe, Oceania and the Americas before them, are increasingly choosing the breeds that will produce more milk, meat and eggs to feed their hungry families and raise their incomes.

They should be supported in doing so. At the same time, the breeds that are being left behind not only have intrinsic value, but also may possess genetic attributes critical to addressing future food security challenges, in developed or developing countries, as the climate, pests and diseases all change. Policy support for their conservation is needed now. This support could be in the form of incentives that encourage farmers to keep traditional animals. For example, policies could support breeding programs that increase the productivity of local breeds, or they could facilitate farmers’ access to niche markets for traditional livestock products. And policymakers should take the value of indigenous breeds into account when designing restocking programs following droughts, disease epidemics, civil conflicts or other disasters that deplete animal herds.

But even such assistance will not enable developing-world farmers to stem all the losses of developing-world farm animals. A parallel, even bigger, effort, linking local, national and international resources, must be launched to conserve livestock genetic diversity by putting some of it ‘in the bank’. The cells, semen and DNA of endangered livestock should be conserved—frozen—and kept alive. The technology is available and has been used for years to aid both human and animal reproduction. It should also be used to conserve the legacy of 10,000 years of animal husbandry. Furthermore, such collections must be accompanied by comprehensive descriptions of the animals and the populations from which they were obtained and the environments under which they were raised.

We should know the type of milking goat that is able to bounce back quickly from a drought. We should know the breeds of cow that resist infection with the animal form of sleeping sickness. We should know the native chickens that can survive avian flu.

We should do all we can to assist farmers and herders in the conservation of these endangered animals—especially now, in the midst of rapid agricultural development. And if some of these treasured breeds fail to survive the coming decades of change, we should at least have faithfully stored and recorded their presence, and have preserved their genes. It is these genes that will help us keep all our options open as we look for ways to feed humanity and to cope with coming, yet unforeseen, crises.

Climate and health experts warn that scientists must work together, or risk ‘disastrous consequences’ to human and animal health in Africa

Consensus: Spread of Malaria, Rift Valley fever, and Avian flu far more likely if researchers continue to ‘operate in silos’ and if solutions ignore local conditions.

human and animal health in Africa

Faced with the prospect of more variable and changing climates increasing Africa’s already intolerable disease burden, scientists must begin to reach out to colleagues in other fields and to the people they want to help if they hope to avert an expected “continental disaster,” according to leading climate, health, and information technology experts, who met in Nairobi last week.

Climate change will further increase the already high variability of Africa’s climate, fostering the emergence, resurgence and spread of infectious diseases. “A warmer world will generally be a sicker world,” said Prof. Onesmo ole-MoiYoi, a Tanzania medical, veterinary and vector expert. “We scientists need to adopt a new way of working, one that makes African communities bearing the burden of disease part of the solution rather than part of the problem.” The separate fields of human health, animal health, climate, vectors and environment must come together to avert a “continental disaster,” according to leading experts who attended the meeting.

Patti Kristjanson of ILRI, which hosted the meeting, agreed. “We need to do things differently than we have in the past. The impact of disease will increase if we continue to operate in silos. Our only chance at reducing the impact of deadly diseases in Africa is to increase collaboration across the disciplines of environment and health, and in a way that involves local communities. Failure to do so could lead to disastrous consequences.”

The experts concluded a three-day meeting sponsored by Google.org and organized by researchers from the IGAD Climate Predictions and Applications Centre (ICPAC), the Kenya Medical Research Institute (KEMRI), the International Centre of Insect Physiology and Ecology (icipe), the International Livestock Research Institute (ILRI) and Google.org.

The meeting was one of the first on the continent to link climate and health researchers to reduce Africa’s infectious disease burden. The experts cited malaria, Rift Valley fever and bird flu as diseases poised to spread to new areas, along with an increasing threat of diseases such as Chikungunya and the emergence of as yet unknown disease pathogens, unless researchers, disease control workers and local communities share information and communicate faster and more strategically across their professions.

Prof. ole-MoiYoi of icipe and Kenyatta University stressed the importance of tapping the expertise of local communities. “By using bed-nets and anti-malarial drugs, and by removing the human-made breeding sites of mosquitoes, communities in the Kenyan Highlands have managed to stop recurrent malaria epidemics.”

“To combat disease, we need a holistic approach that involves local communities,” ole-MoiYoi said. “We can control malaria across Africa if we can divorce ourselves from the linear thinking that looks for ‘a’ solution and adopt an integrated approach.”

The World Health Organisation (WHO)estimates that changes to the earth’s climate are already causing five million more severe illness and more than 150,000 more deaths each year. By 2030, the number of climate-related diseases is likely to more than double.

Dr. Rosemary Sang, a researcher from KEMRI, described a case study of an outbreak of Rift Valley fever that claimed the lives of 155 Kenyans in late 2006 and early 2007. The virus is transmitted from livestock to people either through handling of infected animal material or by the mosquito vectors. Sang said the outbreak, which peaked 24 December, highlights most of the critical challenges researchers and health officials face in connecting data and advanced warnings to realities on the ground.

Kenya’s Garissa District, in the remote north-eastern corner of the country, experienced heavy rains and flooding starting in mid-October 2006, resulting in standing pools of water that became breeding sites for the mosquitoes that transmit Rift Valley fever. The first veterinary interventions did not take place until mid-January 2007, almost three months after the onset of the heavy rains, 2.5 months after mosquito swarms were reported, 2 months after the first livestock and 1.5 months after the first human cases were recorded, respectively.

“We need to move up our response times to these outbreaks,” said Sang. “All of the warning signs of an outbreak were there but we weren’t able to connect the dots.”

She cites poor tele-communication and roads in the region as major challenges. “Many of these areas lie outside mobile phone networks and far from health or veterinary clinics. As animals and then people began to get sick and die, the word didn’t get out fast enough.”

In the end, however, human and animal health officials, working together, were able to save the lives of more people in the 2006/07 outbreak than in the same region in 1998, when more than 600 people died from Rift Valley fever and millions of dollars were lost in livestock trade and tourism.

“The key is predicting outbreaks before they happen and preparing high-risk areas to act quickly to reduce the impact on communities,” said Sang.
Frank Rijsberman of Google.org called on technical experts to strengthen their capacity to predict and prevent infectious diseases. That will take more and better climate, vector, human and animal data, as well as more data sharing.

“The links between the climate and health research communities across Africa need to be strengthened,” Rijsberman said. “By sharing information we can stop some disease outbreaks and dramatically shorten our response time to others – which can not only save lives but also protect communities against subsequent severe economic losses.”

Mapping the way forward
The researchers pointed to climate models and new mapping software such as Google Earth and Health Map as useful tools for integrating vast amounts of environmental, health, and poverty data. “We’re working to identify the populations of people that are most vulnerable to disease and other external shocks,” said Phil Thornton of ILRI. “That includes communities that are at high risk for malaria because, for example, they are located both far from health clinics and near to water sources. We make these ‘vulnerability maps’ publicly available so that these high-risk communities can get the support they need to respond quickly and effectively to disease outbreaks.”

Google.org environmental scientist Amy Luers said better disease responses will also require tackling diseases at their root causes. “We scientists have to do a better job of informing the public of the underlying drivers of the spread of infectious diseases. The impacts of increasing populations and environmental degradation will require institutional and governance changes put in place for a ‘one health’ approach to human, animal and environmental well being.”

“We need to prepare now to avoid future catastrophe,” says Prof. ole-MoiYoi. “We are discovering that climate variability is playing a bigger and bigger role in the spread and severity of diseases across the globe. Our survival, and that of our environment, may depend on our joining hands to understand that environment. And our roles in it.”

The time is now: Safeguarding livestock diversity

ILRI’s Annual Report: ‘The Time is Now: Safeguarding livestock diversity’ has just been released. The report on 2006 work focuses on how research is helping to characterize, use and conserve the world’s rapidly diminishing livestock genetic diversity.

The mission of the International Livestock Research Institute (ILRI) is to help people in developing countries move out of poverty. The challenge is to do so while conserving the natural resources on which the poor directly depend. Among the natural resources important to the world’s poor are the ‘living assets’ people accumulate in the form of their farm animals.

ILRI works with the UN Food and Agriculture Organization (FAO) and many other partners to improve management of livestock genetic resources in developing countries. This year, FAO produced the world’s first inventory on animal genetic resources ‘The State of the World’s Animal Genetic Resources’, highlighting that many breeds of livestock are at risk of extinction, with the loss of an average of one livestock breed every month. The FAO report estimates that 70% of the entire world’s remaining unique livestock breeds are found in developing countries.

ILRI’s Director General Carlos Seré says: ‘Although our information on the world’s remaining livestock genetic resources is imperfect, experts agree that we need to take action now rather than wait for substantially better information to become available.

‘The accelerating threats to livestock diversity in recent years demand that we act now before a substantial proportion of those resources are lost to us forever. The time is now’, says Seré.

At a recent keynote address, the UN Under-Secretary General and Executive Director of the United Nations Environment Program (UNEP), Achim Steiner, echoed these concerns and highlighted the implications of loss of the world’s animal genetic diversity:

‘I, like so many others, was shocked to read of the decline of genetic diversity in livestock outlined by ILRI and FAO in September (2007) at the First International Technical Conference on Animal Genetic Resources.

‘The increasing over-reliance on a handful of breeds such as Holstein-Friesian cows, White Leghorn chickens and fast-growing Large White pigs mirrors the trend in agricultural crops.

‘Mono-cultures, whether it be in agriculture or in the narrowing of human ingenuity and ideas, will not serve humanity well in a world of over six billion shortly moving to perhaps 10 billion.

‘(Mono-cultures) will not enhance stability and adaptation in a climatically challenged world’, concluded Steiner.

Download ILRI’s 2006 Annual Report: ‘The Time is Now: Safeguarding Livestock Diversity’: https://cgspace.cgiar.org/bitstream/10568/2479/1/AnnualRep2006_Safeguard.pdf

Related articles and resources on animal genetic resources

A ‘Livestock Meltdown’ Is Occurring As Hardy African, Asian, and Latin American Farm Animals Face Extinction: https://newsarchive.ilri.org/archives/550

FAQs about saving livestock genetic resources: https://newsarchive.ilri.org/archives/552

Films on animal genetic resources

• 3-minute film on conserving livestock for people

Livestock breeds that have helped people survive countless challenges throughout history are now dying out at an extraordinary rate. Globally, governments are discussing this problem, meanwhile this film sets out 4 approaches that can help now.

http://blip.tv/ilri/conserving-livestock-genetic-resources-for-people-summary-1369699

• 30-second film highlight on Sheko cattle

Sheko cattle come from Southern Ethiopia and there are only 2500 left in the world. They are adapted to withstand trypanosomosis, a disease that kills cattle and people.

http://blip.tv/ilri/three-endangered-african-livestock-breeds-1370212

• 30-second film highlight on Ankole cattle

Ankole cattle come from East Africa. These hardy, gentle, animals are threatened by expanding human populations and market demands. At current rates they will disappear in 50 years.

http://blip.tv/ilri/ankole-cattle-one-of-africa-s-disappearing-livestock-breeds-3982895

• 30-second film highlight on Red Maasai sheep

Red Maasai sheep come from East Africa and do not get sick when infected by intestinal worms. However, the numbers of pure Red Maasai sheep are declining.

http://blip.tv/ilri/three-endangered-african-livestock-breeds-1370212

FAQs about saving livestock genetic resources

01.   What did ILRI/FAO find and how did you find it?
How: A global assessment of livestock genetic resources has been coordinated by the Food and Agriculture Organization of the United Nations (FAO). The assessment aimed to determine the status of the world’s livestock resources – what exists and where, what are their characteristics and the risks they may be facing, and what is the capacity of nations to deal with these. As an international organization addressing poverty through sustainable livestock production, the International Livestock Research Institute (ILRI) develops research tools for characterizing livestock breeds of the developing world and assessing their diversity.

What?: The ‘assessment of the State of the World’s livestock resources’ (as this initiative was called) had the following findings:

  • Over 7000 breeds (representing mammalian and avian species) have been developed over the last 12,000 years, since the first livestock species was domesticated.
  • There are 40 livestock species used for food and agriculture, 5 of which – cattle, sheep, goats, pigs and chickens – account for most of the world’s food and agriculture production.
  • Some 696 breeds have become extinct since the early 1900s.
  • A total of 1,487 breeds are at risk, of which 579 are at critical levels (requiring immediate action).
  • Key causes of threat were identified (see examples below).
  • Lack of information on the world’s livestock resources—what livestock breeds and populations exist and  where, what are their characteristics, do they possess unique genetic diversity—was found to be a key impediment to their sustainable use.
  • Conservation programs are lacking, especially in developing countries where most of the world’s remaining breeds reside and where the risk of loss of livestock genetic resources is greatest

02.   Why do a few specialized ‘European’ breeds of farm animals dominate?

  • In pursuit of quick wins to increase productivity to meet demand, developing countries over the last half century have imported specialized, high-producing breeds, such as the black-and-white Holstein-Friesian dairy cow.
  • Aggressive promotion by breeding companies of the North.
  • Subsidized importation, usually through development assistance.
  • Exotic breeds have been imported into developing countries without adequate information on the robustness/hardiness/appropriateness of the native breeds the imports have been supplanting.

03.   How are the exotic imports faring in their various new locales in developing countries?
There are local niches where exotic breeds have proved productive. For example, Holstein-Friesian cows have done well in the East African highlands, which have temperate climate and adequate feed resources. However, the imports have been unable to cope with the disease, heat, humidity, scarce and poor-quality feed in many developing-country environments. Their inappropriateness for these stressful environments has tended to be discovered only after they have been widely used and have significantly ‘diluted’ the local gene pool, leaving local farmers without their traditional hardy animals.

04.   Why can’t we save all domesticated livestock breeds and populations?
Saving all existing livestock breeds around the world would require considerable investment. Fortunately, some specialized breeds in developed countries are currently safe or relatively safe because they remain popular with local communities and thus are supported by market forces. With globalization and ease of movement of traded commodities, there is increasing risk that fewer and fewer breeds will be supported this way. Many local traditional breeds support the livelihoods of the world’s poor livestock keepers in developing countries. While these native breeds are threatened by rapid changes occurring in the livestock production systems of poor countries, these countries lack the resources to conserve all their traditional native stock.

05.   Why is genetic diversity important in livestock?
Diversity is the basic ingredient for improving productivity, product quality and adaptation to meet different needs. It offers farmers and breeders the options needed to make adjustments to new market needs or to respond to changes in the production environment. A disease outbreak that wipes out a particular (susceptible) genetic type presents a greater risk in ‘monoculture’ (single-breed) production systems than it does in multi-breed systems. In other words, livestock diversity can help people cope with adversity while also providing prospects for livestock improvements. Changes in livestock production across the developing world, as well as an unpredictable future, require that these genetic options be safeguarded. It is particularly important to conserve livestock genetic resources because the ancestors of most of our existing livestock species no longer exist; crop breeding, on the other hand, has benefited enormously by being able to harness genes from the wild ancestors of our major crop plants.

06.   Can’t we just recreate desired traits via genetic engineering if necessary?
This will probably be technically feasible in the future for many production traits of interest in our livestock. And that is exactly why we need to have the diversity from which ‘new animal types’ could be created – whether through genetic engineering or conventional breeding (acceptability and costs, among others, will determine which ‘creation avenue’ is employed). Importantly, we do not know which traits we will need in future and which of the present breeds posses the requisite genes. Thus, as we develop technology and tools to conserve livestock genetic resources, we must also ensure that we have access to the raw materials—the livestock and/or their germplasm.

07.   Doesn’t industrialized agriculture obviate the need for such diversity?
As has happened in crop agriculture, industrialized livestock systems are typically characterized by a handful of specialized ‘breed types’. The chicken and pig industries have a few parental lines that form the basis of commercial chickens and pigs around the world. An outbreak of a disease to which these lines are susceptible could wipe out most of these animals, with disastrous global impacts. Thus, it is in the interests of both the public and private sectors to safeguard diversity in livestock as source of future options.

08.   How is foreign investment reshaping local livestock practices?

  • Direct foreign investment finances breeding companies that introduce foreign breeds.
  • The ‘supermarket revolution’, which is driven in many countries by foreign direct investment, is impacting livestock as well as crop agriculture in significant ways:

    o Standards required for food products sold in supermarkets influence such things as product quality, size  uniformity and timing of delivery.
    o The production volume needed to meet these food standards make it difficult for poor smallholders to participate in the supermarket revolution.
    o Contract-farming provides avenues for a few, well-informed and/or better-endowed farmers to participate in this revolution, sometimes through cooperatives.
   o But most smallholders are left out in this process.

09.   Do developed-world genebanks already hold some of this diversity material?
Developed-world genebanks hold very little livestock germplasm from developing countries—just a few breeds they may have imported for experimental evaluation. The major global flow of livestock genetic material has been from North to South. Currently, the fastest and most effective way for the North to help stem livestock biodiversity losses is to assist developing nations in establishing capacity to save their endangered native breeds. It is not good enough for Southern countries to depend on the North to be custodians of their livestock genetic material. The greatest livestock diversity remaining in the world is in the South and Northern countries are not highly interested in these breeds.

10.   Are rare breeds going to end up being preserved by hobbyists or organic enthusiasts?

In the developed world, there are examples of livestock breeds being preserved by livestock hobbyists or enthusiasts. In the developing world, most livestock owners are poor and the number of breeds needing attention is too large to be addressed by a few rich farmers. Alternative and substantive actions are required.

11.   How important is livestock production to developing world development?

Worldwide, one billion people are involved in animal farming and domestic animals supply 30 per cent of total human requirements for food and agriculture. In developing countries, 70 per cent of the rural poor depend on livestock as an important part of their livelihoods and livestock account for some 30 per cent of agricultural gross domestic product, a figure expected to rise to 40 per cent by the year 2030. Currently, more than 600 million rural poor people rely on livestock for their livelihoods. (Sixty-three per cent of the developing world’s total population live in rural areas, including 75 per cent of the 1.2 billion people trapped in extreme poverty; of these 900 million rural poor, some 70 per cent, or 630 million, raise livestock as part of their livelihoods.) The developing-world’s large and rapidly growing livestock markets make livestock production an income-generating opportunity similar to horticulture and other high-value agricultural commodities. The advantage of the livestock markets is that they are largely domestic and thus require no export infrastructure. Finally, livestock is what poor farmers know how to produce, and they have access to feed and other resources to produce it competitively.

12.   Does livestock production still offer a pathway out of poverty?
Yes. The growing livestock markets and expanding post-production value addition are providing jobs and incomes at many levels. Increasing animal production also of course keeps down critical food prices for the urban poor.

13.   Is another answer to simply scale back the use of livestock in general by reducing demand in the developed world while stopping demand before it starts in developing countries?
The livestock revolution is demand-driven. As consumers become more urbanized and their incomes grow, as they have in much of Asia and Latin America, their demand for animal products grows markedly. We expect that the developing world will double their consumption of animal products in the next 20 years. Livestock production growth to meet the growing market demand has to rely on the same or shrinking land, water and other natural resources. What we need are dramatic productivity increases. Policies will play a key role in shaping what happens in different parts of the world. If polices enforce more environmentally neutral production systems, this could lead to higher prices, particularly in the developed countries, which use intensive systems heavily reliant on external inputs and energy.

14.    How will the ‘supermarket revolution’ take hold in the developing world and what impact this will have on livestock production?
Supermarkets will impose stringent requirements on production of crops and livestock foods, particularly in terms of homogeneous large volumes and food safety conditions. This can make it increasingly difficult for smallholders to participate in these modern commodity chains. Important developments in terms of organizing smallholders for collective action are critical and are being established by agribusinesses and non-governmental organizations (e.g. contract-farming, vertical integration, cooperatives). Large-scale production units will continue to grow and can be developed in pro-poor ways by maximizing employment in poor areas that have resources suitable for animal production. For example, large-scale dairy or feedlot operations may contract forage production to small-scale farmers.

15.   Is the goal of saving diversity simply to boost the potential of alternatives to industrial animal husbandry, such as crop-livestock systems?
No, it is to provide options for the world. Even industrial systems will need animal genetic resources if significant shocks to the system happen, e.g. ban on antibiotics, climate change causing higher temperatures in certain regions and the spread of diseases from the tropics to the temperate world.

16.   Why is it important to boost crop-livestock systems?
Boosting crop-livestock production is the best way to sustain agricultural systems in large parts of the developing world. There are big inefficiencies in these systems that can be addressed with technology, better training and knowledge sharing.

17.   How far along with ‘landscape-livestock genomics’ are you? Is there even the beginnings of a map? When do you expect such a thing might be available?
The aim of landscape genomics is to learn from the co-evolution of livestock and their production systems and use the knowledge gained to better match different breeds with production circumstances. The approach employs molecular genetic tools to understand the genetic composition of livestock at the population level, using specified genetic regions (‘signatures of selection’) that appear targeted by key influencing factors in that environment. By overlaying this information with other sets of information such as agro-ecological maps, one can see what genetic material are candidates for use in which parts of the globe.
Where are we today? Independent of the genomics work, much progress is being made in modelling and mapping livestock systems, including how they are evolving in response to climate change. Development of tools for rapidly mapping genetic composition of populations is also advancing. Over the next 5 years, we plan to have made significant advances in this area and to have applied landscape genomics (even at a pilot scale) in the humid zone of West Africa, focusing on cattle populations.

18.  What do you hope to do next?
Urgent actions include:

  • With FAO and other collaborators, sensitize the global community about the value of conserving livestock genetic resources and mobilize greater support for saving the remaining livestock diversity in the developing world.
  • Focus on breeds already at risk, especially those in the FAO ‘critical list’.
  • Establish gene banks: Ex situ conservation (in gene banks) is seen as the fastest way to save some of these breeds, even if characterization information is inadequate or absent – a special session at the global conference in Interlaken (Switzerland) on 3 September 2007 discussed strategies to move this forward.
  • Facilitate the sharing of genetic material among developing countries, especially where there is evidence that a breed in one country holds promise for another, which will serve as long-term insurance against losses arising from droughts, civil conflicts, and other disasters.
  • Develop re-stocking strategies to ensure that appropriate breeds are used in the aftermath of disasters.
  • Develop pro-poor breeding strategies appropriate for low-input livestock production systems and infrastructure levels available in developing countries.
  • Identify factors that constrain competitiveness of indigenous breeds.

Integrating livestock and water management

Women washing and cow drinking at a river in Rajasthan, India

Livestock are often neglected in water management policies, yet demand for livestock products is predicted to soar, placing even greater pressure on scarce water supplies. A new brief outlines strategies and opportunities to double livestock water productivity.

Water management policies tend to focus on water productivity in crop production and industrial and domestic use. Livestock are given little attention. A new brief entitled ‘Integrating livestock and water management to maximize benefits’, highlights the important contributions livestock make to livelihoods, particularly in developing countries, and the need for livestock to be fully considered in water management policies in order to maximize benefits.

Demand for livestock products are predicted to double over the next twenty years and this will place greater pressure on already scarce water supplies. Livestock contribute to the livelihoods of at least 70% of the world’s rural poor, providing many benefits including food, fuel, fertilizer and transportation. According to ILRI scientist Don Peden, ‘integrating livestock and water could bring big benefits, but it is receiving little attention in the livestock and water sectors.’

Livestock water productivity
Livestock water productivity is the amount of water depleted or diverted to produce livestock and livestock products and services. Livestock require a great deal of water – not for drinking – but for their feed. Livestock water productivity can be increased by identifying areas where water efficiency gains can be made to free up scarce water for other uses.

Many people in industrial countries eat more food than is necessary and healthy.
‘Health experts and environmentalists in industrial countries are calling for people to reduce their consumption of meat and dairy products. In the developing world, nutritionally deprived people could benefit from consumption of more animal products’ says Peden.

‘The challenge is to enable poor livestock keepers to get more from their animals, while using less water and reducing degradation of land and water resources.’ The convergence of high livestock densities and poverty occurs mostly in South Asia and sub-Saharan Africa. To help the greatest number of livestock-dependent rural poor, these two regions would therefore be priority regions for integrating livestock and water development.

Distribution of poor livestock keepers (no.km3)

https://www.ilri.org/Link/Publications/Publications/Theme%201/Kruska%20et%20al%20Livestock%20systems%20Ag%20systems.pdf

Strategies for improving livestock water productivity

The brief outlines four strategies for improving livestock water productivity, to reduce the amount of water used in livestock production and to increase the benefits from livestock per unit of water used. The authors argue that by taking a balanced site-specific approach, that combines all four strategies, it should be possible to at least double livestock water productivity.

  • Strategic sourcing of animal feeds – Reducing the amount of water depleted to produce animal feed may be one of the most effective ways to improve water productivity globally. Three basic ways of accomplishing this are (i) promoting non-grain food sources with high water productivity, (ii) use of crop residues and by-products as feed, and (iii) practices that encourage more efficient grazing.
  • Enhancing animal productivity and reducing herd sizes – In much of the developing world livestock productivity is less than 50% of genetic potential. Milk production is low – often less than two litres per cow per day – as opposed to 15 litres or more. Promoting better health, genetics, nutrition and animal husbandry practices would enable livestock keepers to get more from fewer animals.
  • Reducing negative environmental impacts – Loss of vegetation due to overgrazing results in increased soil erosion, downslope sedimentation and reduced water infiltration. Research indicates that low to moderate grazing pressure has little negative impact on hydrology. Managing animals in ways that reduce land and water degradation, for example, by restricting animal access to certain areas and more integrated management of grazing land will help to reduce negative environmental effects.
  • Strategic provision of drinking water – The amount, quality and location of livestock drinking water can have a big impact on livestock water productivity. Water deprivation reduces feed intake and can greatly lower milk production. Providing adequate quality drinking water – strategically placed – enables animals to reach otherwise inaccessible grazing areas, keeps them from contaminating domestic water sources, and enhances production of meat and milk. Given the high value of animals, particularly to poor households, and the relatively small amount of water animals drink, strategic provision of drinking water is a good investment.

The authors argue that the livestock water productivity opportunities identified in the brief can only be realized if livestock and water are fully integrated and location-specific adjustments are made, for example, at the community level and integration of pasture management and water users associations.

Vaccine agency to reduce loss of human and animal life in developing countries is launched

The Global Alliance for Livestock Veterinary Medicine (GALVmed) recently unveiled animal health projects it will tackle over the next ten years.

GALVmed announced progress on vaccine and treatments for Newcastle disease in poultry and East Coast fever and Rift Valley fever in cattle at its international launch at the Kenya Agricultural Research Institute (KARI), in Nairobi, on Friday 9 March 2007. This marked the beginning of a 10-year program aimed at creating sustainable solutions to the loss of human and animal life caused by livestock diseases, which threaten 600 million of the poorest people in developing countries in Africa, Asia and Latin America.

GALVmed, a non-profit organization funded by the UK Department for International Development (DFID), is partnering with private and public-sector organizations around the world. It has identified 13 livestock diseases as key targets for development of livestock vaccines and animal health diagnostics and medicines. Founder members of the agency include the International Livestock Research Institute (ILRI), FARM-Africa, Pfizer, Intervet and Merial. GALVmed exists to broker partnerships among pharmaceutical companies and other public and private-sector organizations to develop accessible and affordable animal vaccines for the whole world’s poorest farmers.

Zoonotic diseases, which are transmitted between animals and humans, mainly afflict the poorest households, as evidenced by the recent outbreak of Rift Valley fever in livestock in Kenya, which killed 150 people. Brian Perry, a senior scientist at ILRI, warns that ‘Today, combating livestock diseases is everybody’s business – tropical animal diseases are no longer “just a local problem”. For example, there is a threat that diseases like Rift Valley fever will follow bluetongue into Europe.’

GALVmed’s chief executive Steve Sloan explains that ‘Every year, poor farmers worldwide lose an average of a quarter and in some cases half, of their herds and flocks to preventable disease. This devastates developing economies. Many of these are zoonotic and so also cause human deaths.

Livestock play a critical role in helping people escape poverty. Livestock disease is one of the greatest barriers to development for poor livestock keepers. Flocks and herds die every year from diseases for which vaccine simply do not exist or are beyond the reach of the poor. John McDermott, ILRI’s deputy director general for research says, ‘ILRI scientists and partners have done ground breaking science to develop an experimental vaccines to protect cattle against East Coast fever. The next steps are to conduct trials to facilitate the delivery of this vaccine to the farmers. To do that, we need specialist partners who will test, manufacture and market the vaccine and make it accessible and affordable to the thousands of livestock keepers afflicted by this cattle killing disease.

Click here for the GALVmed News release.

To find out more about GALVmed visit the website
www.galvmed.org

Epilepsy, brain cysts and tapeworms

Ten pigs went to market, some pigs stayed at home, all pigs ate human faeces… and so a deadly tale begins. Poor sanitation, poor hygiene practices, poor pig husbandry and poor meat inspection all fuel a vicious cycle that is destroying lives and livelihoods in many developing countries. A potentially deadly parasite, Taenia solium, known as the pork tapeworm, is being transmitted from pigs to people, people to pigs and from people to people. The disease Cysticercosis has been dubbed one of the neglected diseases of neglected populations. It is considered by the World Health Organization to be one of the few potentially eradicable diseases, yet it is now an emerging disease of eastern and southern Africa. Awareness and training activities are being organised in eastern and southern Africa to help combat the parasite that causes intestinal taeniasis in humans, cysticercosis in pigs and humans, and the potentially deadly human disease neurocysticercosis, which is the formation of (T. solium) cysts in the brain. Neurocysticercosis affects millions of people in Asia, Latin America and Africa. It is rarely found in industrialized countries or in countries where pork is not consumed for religious or cultural reasons. However, even in these countries more cases are being seen due to immigration, increased travel and importation of domestic workers from endemic countries. It is a disease associated with poverty and underdevelopment, and is endemic in many developing countries where raising pigs and eating pork are popular. Neurocysticercosis infection may remain non-symptomatic for years before manifesting as seizures, severe headaches or other neurological problems. It is also a major cause of acquired epilepsy in developing countries. It affects agility, concentration and in severe cases can result in death. The true extent of the problem is not known because tapeworm carriers often do not know that they are carrying the parasite. It can lie in the human gut for years without causing any symptoms. Major advances are being made in the diagnosis and treatment of people and pigs infected with pork tapeworm, but these diagnostic tools and medical treatments are not yet widely available in many endemic countries. A vaccine to prevent pigs from contracting the disease is also being developed. How it is spread Since the mid 1990s, more and more people in rural areas in eastern and southern Africa are keeping pigs, fuelled in part by a significant increase in the consumption of pork in both rural and urban areas. To poor smallholders in these regions, pigs represent a new opportunity in livestock keeping worth exploiting. In Africa cattle are highly prized, but they can be problematic – protecting them from disease and theft requires constant vigilance and sometimes round-the-clock surveillance. Pigs, however, are comparatively easy to manage, and are therefore becoming increasingly popular and important, especially in rural smallholder communities. Pigs, like so many livestock, can serve as a 'mobile bank', with one adult pig fetching upwards of US$100 at markets in this region. Many farmers will keep between one to three pigs and sell an adult pig at the beginning of the school year to provide for school fees. However, the increasing number of pigs being kept in eastern and southern Africa is raising its own set of problems, with a vicious cycle of infection and reinfection. This is not just a problem for rural areas, where most pigs are kept, but it is also a problem for urban areas where infected pork can be consumed, and where human carriers of the parasite can infect other people. Most worrying is the fact that people do not have to eat pork or keep pigs to become infected with cysticercosis. They can be exposed to the eggs from a human tapeworm carrier. Disease and poverty go hand in hand. Poor sanitation and poor hygiene practices all increase the risk of contracting diseases. In many developing countries, particularly in rural areas, human waste is generally disposed off in a pit or out in the fields, or in some cases it is simply thrown into the garden. In many poor areas, livestock keeping is rudimentary and pigs, like many livestock, wander about freely. When the livestock keepers and family members go out to the fields to defecate, their pigs will follow. Pigs like to eat human faeces and will trail out to where people have defecated to eat the stool. If these people are carriers of the tapeworm they will produce thousands of highly contagious eggs in their stool. These eggs are hardy and may survive more than eight months in the environment, particularly in tropical conditions; the climate in Africa is ideal for the parasite to thrive. This presents a health hazard not only for pigs, but also for people. If pigs ingest the eggs, they develop into the immature larval form of the parasite (cysticercosis) that can result in the formation of hundreds to thousands of cysts in the muscles of the animal. In areas where meat inspection and control is lacking, infected pigs are often slaughtered and the pork sold for human consumption. Eating infected raw or undercooked pork can cause people to become infected with the adult tapeworm form of the parasite (taeniasis). The parasite will remain in their gut, but eggs of the tapeworm will be expelled through their faeces. This does not, however, cause neurocysticercosis, which requires transfer of the contagious eggs from the infected person’s faeces to the same or another person. If humans come into contact with infected human stool and accidentally ingest the eggs, the eggs develop into the larval form of the tapeworm, which targets the muscles, the eyes and most commonly the brain (neurocysticercosis), manifesting as cysts. This may occur through direct contact with a tapeworm carrier’s infested stool, by putting contaminated fingers in the mouth, or through ingestion of water or foods that have become contaminated with the infected faeces. Awareness and control Pig traders have become aware of the heightened problem of cysticercosis in pigs. Many were finding that when the pigs they had purchased were slaughtered and inspected, they had cysts and were therefore condemned. As a result, some pig traders have become extremely vigilant and now routinely carry out checks on pigs before purchase. Examining the underside of the pig’s tongue is a quick, easy and cheap way of checking for positive signs of infection, but may only detect about 50% of the pigs infected. Visual observation of the pork meat can also be used to determine the presence or absence of the parasite. However, in areas where livestock and meat inspection are not so vigilant, infected pigs can be slaughtered and sold for human consumption. The increasing consumption of pork in urban areas means that infected pigs can be transported into densely populated areas, where the infected pork finds its way into human diets. These unwitting consumers then become carriers of the parasite. In poor rural communities where people are carriers of the intestinal tapeworm and pigs are allowed to roam and consume human faeces, it is likely that pigs will become infected with the parasite. For these poor livestock keepers, their losses are threefold – they lose the income they expected to receive from the sale of their pigs; they and their families lose a valuable protein source when the pig carcasses are condemned, thus increasing the likelihood of family malnutrition; and their own health and productivity are at risk from cysticercosis infection. There is also the risk of tapeworm carriers transmitting the parasite to other people. Prevention Cysticercosis can be prevented by interrupting the life cycle of the parasite at one or more points. Good pig husbandry, including preventing pigs access to human faeces, is one way to break the cycle. Total confinement of pigs is a possibility but only sustainable if integrated with other management practices such as housing and feeding with locally available materials and feedstuffs. Strict meat inspec

tion and control also helps to break the cycle, preventing infected meat from being consumed by people. Good hygiene practices and thorough cooking of pork can prevent people getting infected, or reinfecting themselves and/or infecting others. These measures require education and training of all involved, including pig keepers and their families, pig traders, meat sellers, and the general public – whether they eat pork or not.