A fine ‘balancing act’ will be needed to guide smallholder livestock development in a changing world

 With about 17 billion domestic animals in the world, with most of them raised on small mixed crop-and-livestock farms in developing countries, livestock production is a major part of global agricultural production. But the sector requires large amounts of feed and water and domestic animals generate significant amounts of greenhouse gases such as methane, which are causing global warming.

One way to make livestock production more efficient is through ‘sustainable intensification’ brought about by farm activities that help close yield gaps while also reducing the level of greenhouse gas emissions per unit of milk or meat produced.

That was the topic of a recent ‘livestock live talk’ at the Nairobi headquarters of the International Livestock Research Institute (ILRI) given by agricultural systems analyst Mario Herrero.

‘When it comes to production efficiencies’, said Herrero, ‘the livestock sector lags behind crop farming. We’re going to have to find ways of reducing these inefficiencies if we plan on livestock helping to feed a world population reaching some 9 billion people by 2050.’

Livestock and global change

In rich countries and communities, Herrero added, reducing the amount of meat consumed could help lower demand for animal products while also reducing obesity and health problems associated with overconsumption of meat.

‘But in the developing world’, he said, ‘the major health problems are associated with eating too little of nourishing foods such as milk, meat and eggs, which provide the protein and micronutrients needed for a healthy and productive life.’

Although a global reduction in meat consumption might benefit the environment, Herrero said, the social and nutritional impacts of meat reduction in the developing world, where most poor people subsist on diets of cheap starchy grains and tubers, are unknown and could be severely harmful.’

Herrero said the ‘best options’ for making livestock production more efficient will vary considerably depending on the world’s vastly different livestock production systems and regions. What will work in dryland agro-pastoral systems of West Africa, for example, will differ vastly from what will increase efficiencies in pig rearing in southwestern China.

Livestock and global change
One way of moving forward, Herrero suggested, is by viewing the current inefficiencies and yield gaps in the livestock sector in developing countries not as problems but as opportunities. ‘We can, and need to, encourage researchers to come up with promising new ways of reducing these livestock production inefficiencies.’

What this will take, Herrero said, is ‘a balancing act’ to deal with both the opportunities and challenges in livestock production systems.

‘Livestock systems are not the same everywhere; we need to understand the benefits and costs of the different systems and how these relate to the pressures of climate change and rising global food demand,’ he said.

Herrero recommended taking a nuanced approach to smallholder livestock development, which might include:

  • Investing not only in high-potential agricultural areas but also in the more extensive mixed crop-and-livestock systems of poor countries, which have been neglected till now and where production levels could be greatly increased.
  • Increasing milk production by finding ways for poor dairy producers to obtain higher-quality year-round livestock feeds.
  • Providing ways for small-scale farmers to ‘intensify’ their mixed farming and become more market oriented.

In future, Herrero said, research needs to help resolve issues such as how best to use rangelands, where and when to invest in commercial large-scale livestock production systems and in smallholder systems, and how to harness biotechnology to help make small-scale livestock production more efficient.

View Mario Herrero’s presentation

Herrero is a senior agro-ecological systems analyst with more than 15 years experience working on livestock, livelihoods and the environment interactions in Africa, Latin America and Asia. At this seminar, which also marked his farewell presentation at ILRI, Herrero looked back at his 13 years work at ILRI and reflected on ways of making the global livestock sector sustainable in the face of global change.


Livestock live talks’ is a seminar series at ILRI that aims to address livestock-related issues, mobilize external as well as in-house expertise and audiences and engage the livestock community around interdisciplinary conversations that ask hard questions and seek to refine current research concepts and practices.

All ILRI staff, partners and donors, and interested outsiders are invited. Those non-staff who would want to come, please contact Angeline Nekesa at a.nekesa[at]cgiar.org (or via ILRI switchboard 020 422 3000) to let her know. If you would like to give one of these seminars, or have someone you would like to recommend, please contact Silvia Silvestri at s.silvestri[at]cgiar.org (or via ILRI switchboard 020 422 3000).
 

Written by Jane Gitau, Nancy Moss and Paul Karaimu.

As the cooking pot turns: Staple crop and animal foods are being ‘recalibrated’ for a warmer world

The cows get automated

CGIAR has just published a really useful snapshot of the world’s major food crops, animals and tree and water resources and what is likely to happen to them in the face of climate change, the effects of which on food production will require reexamining what’s in the cooking pot, especially in regions where people already do not get enough to eat. Above, a worker on a small farm in Limuru, Kenya, pushes maize stalks (after their cobs have been harvested) through a pulverizer before feeding the stover to the cows; this is one way small-scale farmers can improve their dairy cow feeding and milk yields while reducing the amount of methane their cows generate per unit of milk produced. (Photo on Flickr by Luigi Guarino.)

CGIAR, the world’s leading international agricultural-research-for-development organization, has just done something really useful. It has published a snapshot of how climate change is likely to affect key food crops and livestock farming and natural resources in poor countries, where these staple foods and resources remain the backbone not only of food security but also of national economies. What happens to maize and wheat and rice and cattle and goats and sheep and trees and water, for example, will foretell what happens to the 1 billion people living in severe poverty today.

This snapshot summarizes the state of knowledge on 21 CGIAR crop commodities as well as on the ‘living’ livestock assets of the poor and the water and tree resources on which they depend.  The study, Impacts of climate change on the agricultural and aquatic systems and natural resources within the CGIAR’s mandate, should help decision-makers at all levels prepare better for future food production on our warming planet.

The summaries, written by scientists at 14 of the 15 CGIAR centres, outline the importance of each commodity for food and nutrition security, its biological vulnerability to climate change, and the likely socio-economic vulnerability of the people affected.

The study shows points up some surprising gaps in our knowledge. For example, crops like cassava and yam, which make critically important contributions to the food security of millions of people and are highly climate-resilient, have been little studied in relation to a changing climate. We also know little about how multiple stressors of animals and plants may combine. We also have big knowledge gaps about likely impacts of climate change on weed, pest and disease complexes. We need this information to help identify and evaluate the trade-offs and synergies of particular climate change adaptation and mitigation options in different places.

A few things are already for certain. We must develop hardier varieties of maize, rice and wheat—the three main food staples around the world—quickly to avoid declines in their yields. And the common sources of protein—livestock, fish, and even soybeans—all face difficulties in adapting to the new normal.

Crops and animals till now neglected by major research initiatives, and now considered ‘old-fashioned’ by many, are likely to play an increasingly important role on global food production once again. Drought-resistant camels and goats, ‘famine foods’ such as heat-tolerant cassava and millet, and dual-purpose crops such as protein-rich cowpea (aka black-eyed peas) and groundnut that feed people and animals alike are all likely to come back to the fore in regions with drying or more unpredictable climates.

In some drying regions, smallholders will be forced to switch from crop growing to livestock raising, and/or from raising dairy cows to raising dairy or other goats. This matters to many. As the new CCAFS policy brief reports: ‘In South Asia and sub-Saharan Africa, for example, nearly one billion people living on less than two dollars per day keep livestock; two-thirds of those are women. Fisheries and aquaculture support an additional half-billion people around the world. There is no easy answer for adapting these sectors to changing climates.

But the benefits to people from eating fish and animal protein—as well as raising livestock for their livelihoods—will not evaporate as the planet warms; answers must be found in securing their continued availability.’

While the news seems grim, adaptation is possible. Recent CCAFS research in Africa found that farmers are already adapting to climate change. Some 34% of the farmers interviewed in Africa, for example, have reduced their livestock herd sizes and 48% are managing their feed resources better. The better livestock diets also lower livestock methane emissions per kilogram of milk or meat produced. On the other hand, only 25% of the farmers interviewed have begun using manure or compost to improve their soils and only 10% have begun to manage or store agricultural water.

For more information, visits the CCAFS blog page on Recalibrating food production in a changing climate—What do we know and what can be done?

Read a new policy brief by CCAFS that outlines the challenges required in feeding the estimated 9–10 billion people who will live in this world by 2050. In the brief, the need for a complete recalibration of what crops we grow and animals we raise around the world is detailed, as climate change will bring challenges in weather, water use, and increased pests and diseases of crops and animals alike.

The policy brief is based on a new CCAFS working paper. Read the paper by Philip Thornton and Laura Cramer (eds.). 2012. Impacts of climate change on the agricultural and aquatic systems and natural resources within the CGIAR’s mandate. CCAFS Working Paper 23. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security.

This report was co-edited by ILRI scientist Phil Thornton, who is a scientist at the International Livestock Research Institute (ILRI) who also coordinates one of CCAFS’ research groups. CCAFS is a global partnership launched in 2011 between the research centres of CGIAR and the Earth System Science Partnership. CCAFS facilitates and integrates thematic work across multiple CGIAR Centres and other global, regional and local partners. Its key target groups are resource-poor agricultural producers, and rural and urban consumers of food, in low-income and middle-income countries in the tropics and sub-tropics.

Philip Thornton explains about CCAFS: ‘There are many other examples of the way in which CCAFS is working across disciplines and mandates, and across temporal and spatial scales. These include linking to modelling communities from different fields such as crop modelling and global integrated assessment modelling, and partnering with organisations with skills in the development and provision of downscaled models, decision-tools and datasets that provide the necessary granularity for national and sub-national planning. As well as linking across scientific disciplines, CCAFS recognizes the need to span boundaries across research and policy domains. To link knowledge and action entails involvement of policy-makers in all stages of the research cycle, and an understanding of policy as dynamic and polycentric across the public, private and civil society sectors.’

Read of interviews of Phil Thornton in the following media this week:

The Guardian’s Global Development Blog: When the chips are down: potato, maize and rice crop yields set to fall—Farmers in developing world will have to grow different food to prevent world going hungry in changing climate, says report, 31 Oct 2012.

BBC: Bananas could replace potatoes in warming world, 31 Oct 2012.

Making Asian agriculture smarter

cambodia21_lo

A cow feeds on improved CIAT forage grasses, in Kampong Cham, Cambodia (photo credit: Neil Palmer/CIAT).

Last week, coming on the heels of a Planet Under Pressure conference in London, which set out to better define our ‘planetary boundaries’ and to offer scientific inputs to the Rio+20 United Nations sustainable development conference this June, a group of leaders in Asia—comprising agriculture and meteorology chiefs, climate negotiators and specialists, and heads of development agencies—met to hammer out a consensus on ways to make Asian agriculture smarter.

The workshop, Climate-smart agriculture in Asia: Research and development priorities, was held 11–12 April 2012 in Bangkok. It was organized by the Asia-Pacific Association of Agricultural Research Institutes; the CGIAR Research Program on Climate Change, Agriculture and Food Security; and the World Meteorological Organization.

This group set itself three ambitious tasks: To determine the best options (1) for producing food that will generate lower levels of greenhouse gases, which cause global warming; (2) for producing much greater amounts of food, which are needed to feed the region’s rapidly growing and urbanizing population; and (3) for doing all this under a changing climate that, if farming and farm policies don’t change, is expected to reduce agricultural productivity in the region by anywhere from 10 to 50 per cent over the next three decades.

The workshop participants started by reviewing the best practices and technologies now available for making agriculture ‘climate smart’. They then reviewed current understanding of how climate change is likely to impact Asian agriculture. They then agreed on what are the gaps in the solutions now available and which kinds of research and development should be given highest priority to fill those gaps. Finally, they developed a plan for filling the gaps and linking scientific knowledge with policy actions at all levels.

On the second of this two-day workshop, the participants were asked to short-list no more than ten key areas as being of highest priority for Asia’s research and development communities.

This exercise tempted this blogger to suggest ten suitable areas in the livestock sector.

(1) Lower greenhouse gas emissions from livestock through adoption of improved feed supplements (crops residues) that reduce greenhouse gas emissions.
Contact ILRI animal nutritionist Michael Blümmel, based in Hydrabad, for more information: m.blummel at cgiar.org

(2) Safeguard public health by enhancing Asia’s capacity to detect and control outbreaks of infectious diseases transmitted between animals and people.
Contact ILRI veterinary epidemiologist Jeff Gilbert, based in Vientienne, for more information: j.gilbert at cgiar.org

(3) Improve the efficiency of water used for livestock and forage production.
Contact ILRI rangeland ecologist Don Peden, based in Vancouver, for more information: d.peden at cgiar.org 

(4) Pay livestock keepers for their provision of environmental services.
Contact ILRI ecologist Jan de Leeuw, based in Nairobi, for more information: j.leeuw at cgiar.org

(5) Recommend levels of consumption of meat, milk and eggs appropriate for the health of people, their livelihoods and environments in different regions and communities.
Contact ILRI partner Tara Garnett, who runs the Food Climate Research Network based in Guildford, for more information:  t.garnett at surrey.ac.uk

(6) Design institutional and market mechanisms that support the poorer livestock keepers, women in particular.
Contact ILRI agricultural economist Steve Staal, based in Nairobi, for more information: s.staal at cgiar.org 

(7) Educate publics in the West on the markedly different roles that livestock play in different regions of the world.
Contact ILRI systems analyst Philip Thornton, based in Edinburgh, for more information: p.thornton at cgiar.org

(8) Adopt risk- rather than rule-based approaches to ensuring the safety of livestock foods.
Contact ILRI veterinary epidemiologist Delia Grace, based in Nairobi, for more information: d.grace at cgiar.org 

(9) Focus attention on small-scale, relatively extensive, mixed crop-and-livestock production systems.
Contact ILRI systems analyst Mario Herrero, based in Nairobi, for more information: m.herrero at cgiar.org 

(10) Give livestock-keeping communities relevant and timely climate and other information via mobile technologies.
Contact ILRI knowledge manager Pier-Paolo Ficarelli, based in Delhi, for more information: p.ficarelli at cgiar.org

Do you have a ‘top-ten’ list of what could make Asian agriculture ‘smart agriculture’? Post it in the Comment box, please!

Go here for ILRI blogs about the Planet Under Pressure conference.

ILRI in Asia blog

New reports explore reliability of climate models at predicting impacts on agriculture

Washing harvested potatoes in a village in central Malawi

A farmer washing newly-harvested potatoes in Malawi. New studies in Africa and Asia offer insights into the reliablity of climate projections for agriculture (photo credit: ILRI/Stevie Mann).

Findings from a series of studies that assessed the reliability of climate models in predicting the impact of climate change on agriculture were released today.

The reports, which are based on studies that tested General Circulation Models in West Africa, East Africa and the Indo-Gangetic plains were produced by the Climate Change, Agriculture and Food Security (CCAFS) research program of the Consultative Group on International Agricultural Research (CGIAR) and Oxford University. The studies reviewed impacts of different climate change scenarios on crop farming in these regions.

The reports show that though individual models have a number of severe weaknesses in predicting agricultural impacts of climate change, they can be used together to produce useful climate change projections. The reports give details on the specific strengths and weaknesses of each of the models used and how they can be used together to predict possible shifts in farming practices.

‘Ensemble model predictions can overcome many of the individual model weaknesses to help decision makers plan future agricultural activities,’ said Philip Thornton, a scientist with the International Livestock Research Institute (ILRI), who coordinated the research for the CGIAR Climate Change program. ‘This information can guide investments in risk management, adaptation and mitigation research, as well as infrastructural development.  These actions are crucial if agriculture is to adapt to a changing climate.’

Read full story on the CCAFS news blog: http://ccafs.cgiar.org/blog

 

More on getting credible figures for livestock emissions of greenhouse gases

Cover of recommendations produced Nov 2011 by CCAFS/Commission on Sustainable Agriculture and Climate Change

The Commission on Sustainable Agriculture and Climate Change, an initiative of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), is identifying policy changes and actions needed to help the world achieve food security in the face of climate change; the Commission launched this summary for policymakers on 16 Nov 2011 (photo on cover by Neil Palmer/CIAT).

The current issue of New Scientist publishes an article describing a recently released study, ‘Achieving Food Security in the Face of Climate Change’, which was commissioned by the CGIAR Research Program on Climate Change, Agriculture and Food Security (Consultative Group on International Agricultural Research). For more on that study, see the CCAFS news release of 16 November 2011: ‘Global Commission Charts Pathway for Achieving Food Security in Face of Climate Change‘.

Sujata Gupta’s New Scientist article on meat consumption, ‘Just how much meat can eco-citizens eat?’ (online publication date: 16 November 2011; print issue date: 19 November 2011; print issue number: 2839), contains what we believe is a factual error. Gupta quotes a 2007 article in the Lancet (‘Food, livestock production, energy, climate change, and health’, doi:10.1016/S0140-6736(07)61256-2) that 80% of agricultural greenhouse gas emissions come from meat production.

More credible figures, compiled from international global assessments by agricultural systems analyst Mario Herrero and his colleagues at the International Livestock Research Institute, are the following.

The total agricultural sector emits around 25–32% of global anthropogenic greenhouse gas emissions. Crops emit 14% (EPA 2006) and all livestock emit 11–18%, depending on how emissions are attributed (FAO 2006, EPA 2006, PBL 2010). The emissions from livestock can be divided roughly as 30% methane from enteric fermentation, 30% nitrous oxide from manure management and 40% from carbon dioxide from land-use changes for grazing and feed production (FAO 2006). Figures for the emissions from land-use changes carry a lot of uncertainty. Emissions can also be divided by species and product. For example, the dairy sector is responsible for roughly 27% of greenhouse gas emissions from livestock (FAO 2010) while monogastric production (pigs/poultry) is responsible for  10–20% of the livestock emissions. Hence, it is not possible that beef production can account for 80% of all agricultural emissions. Even if beef cattle represent 50–60% of livestock emissions, this translates roughly into a figure close to 30–35% of all agricultural emissions—certainly not 80%. What is true is that of all livestock products, beef is the most inefficient in terms of greenhouse gas emissions produced per unit of product, especially compared to dairy and monogastrics (De Vries and de Boer 2010).

Herrero and his colleagues at ILRI, CCAFS and elsewhere are publishing updates on topics concerning livestock production and climate and other kinds of global change. Look out, for example, for the following book chapter, due next month, which we will report on in this blog: M Herrero, PK Thornton, P Havlík, and M Rufino, Livestock and greenhouse gas emissions: Mitigation options and trade-offs. In: E Wollenberg, A Nihart, ML Tapio-Bistrom and C Seeberg-Elverfeldt (eds), Climate Change Mitigation and Agriculture, Earthscan, London, UK (in press).

See an earlier report on a similar topic in this ILRI News Blog: Livestock and climate change: Towards credible figures, 27 Jun 2011.

Update: ‘Mapping Hotspots of Climate Change and Food Insecurity’

Map 4.4  Five percent reduction in crop season, sensitivity to change, capacity

 

Last month the Climate Change, Agriculture and Food Security (CCAFS) program of the Consultative Group on International Agricultural Research (CGIAR) launched a report showing global hotspots to climate induced food-insecurity, garnering significant media attention. Several weeks later, the authors, from the International Livestock Research Institute (ILRI), noticed two errors in the calculations, and so CCAFS immediately took the report offline for corrections. CCAFS issued an erratum that outlines the errors in the first version as well as in the press release. The errors are related to calcluation of population numbers, in one case the number of people at risk is underestimated, while in the other case the number of people most at risk is overestimated.

  1. The press release stated that “there are 56 million food-insecure and crop-dependent people in parts of West Africa, India and China who live in areas where, by the mid-2050s, maximum daily temperatures during the growing season could exceed 30 degrees Celsius (86 degrees Fahrenheit).” The accurate number is 170.5 million. Why did this happen? The researchers miscalculated the population numbers (in this case the number of people affected) by a factor of about three. Therefore, the population number in the maps 4.4 through 4.12 are underestimated as well. Map 4.4 (above) was further modified to correct High and Low exposure categories (which had been reversed)  What is the significance of this? The new numbers tell us basically the same story as our previous calculations, only that more, not fewer, people are likely to be affected by hunger and more extreme climates.
  2. The press release stated that “there are 369 million food-insecure people living in agriculture-intensive areas that are highly exposed to a potential five percent decrease in the length of the growing period.” The accurate number is 265.7 million. However, the number in the two highest categories of vulnerability (HHL and HHH), goes up from around 607 million in the previous calculations to nearly 1 billion (999.8 million) in the current calculations.Why did this happen? The researchers mistakenly transposed the “high” and “low” exposure categories in the 5% map (4.4), which actually results in a lower number of people being most at risk than was stated in the press release.What is the significance of this? Our revised map shows the same basic message as our previous map, that large portions of India, West Africa, and China are predicted to be hotspots of both climate change and food insecurity.

Erratum: The corrected figures are now available for download (PDF).

Corrections to Press Release: Download the corrected press release in multiple languages at the CCAFS Press Room.

The final revised report is now available.

La Nina, not climate change, probable cause of East Africa’s drought–ILRI livestock scientists

denan 1

One of thousands of dead cattle in the southern Somali Region of Ethiopia five years ago, in an earlier drought in the same region of the Horn of Africa (photo on Flickr by Andrew Heavens).

Scientists at the International Livestock Research Institute (ILRI), headquartered in Nairobi, Kenya, are saying that the current drought cycle in East Africa’s Horn, which has already led to famine in southern Somalia, cannot be ascribed to climate change, although there is evidence that La Niña is a probable cause.

Interviews by IRIN of ILRI scientists Phil Thornton, a systems analyst specializing in climate change in developing countries, and Jan de Leeuw, an environmental scientist leading ILRI’s rangelands research, were published in the Guardian‘s Development Network Blog.

‘. . . Philip Thornton, a senior scientist who works part-time with the Nairobi-based International Livestock Research Institute (ILRI) and the University of Edinburgh-based Institute of Atmospheric and Environmental Sciences, has done some pioneering work on projections of climate-change impact in eastern and southern Africa.

‘He told IRIN via email that projections of the climate change impact in east Africa were “a problem” as the authoritative inter-governmental panel on climate change’s (the IPCC) fourth assessment report “indicated that there was good consensus among the climate models that rainfall was likely to increase during the current century.

‘”But work by other climate scientists since then suggests that . . . certain Indian Ocean effects in east Africa may not actually occur.

‘”Some people think that east Africa is drying, and has dried over recent years; currently there is no hard, general evidence of this, and it is very difficult as yet to see where the statistical trends of rainfall in the region are heading, but these will of course become apparent in time.”

‘The IPCC’s fifth assessment report will be released in 2014.

‘Jan de Leeuw is the operating project leader in the vulnerability and sustainability in pastoral and agro-pastoral systems within ILRI’s people, livestock and environment theme. He points out that this La Niña event is one of the strongest since the 1970s. But he says La Niña, along with El Niño, appear in cycles that “we don’t understand”.

‘What we do know is that La Niña started to develop in August 2010. It cools surface waters in the central and eastern Pacific Ocean, while allowing warmer water to build in the eastern Pacific. “The pool of warm water in the east intensifies rains in Australia, the Philippines, and Indonesia. Domino-style, this pattern also increases the intensity of westerly winds over the Indian Ocean, pulling moisture away from east Africa toward Indonesia and Australia. The result? Drought over most of east Africa and floods and lush vegetation in Australia and other parts of Southeast Asia,” according to the US government’s National Aeronautics and Space Administration.

‘De Leeuw writes: “La Niña events were common from 1950 till 1976. Since then we had two decades [until about 1996] with fewer events of lesser depth. This has changed since then and over the last 15 years or so we have had more frequent La Niña events.”

‘Events as deep as the current La Niña occur once in 20 or 30 years, writes De Leeuw. “We are in a period now of more frequent La Niña events, but such a situation was there from 1950 till 1976 also.”

‘Thornton has the last word when he says research attention must focus on developing effective early warning systems and ways to help people affected by these events, who have no use for “academic” consideration of the linkages with climate change to cope better with the current levels of weather variability, “whatever happens in the future”.’

Read the whole article by IRIN on the Guardian‘s Development Network Blog: La Niña blamed for east African drought: Environmentalists call for the development of early warning systems to help countries prepare for adverse weather, 14 Jul 2011.

World Bank president says it’s time to push the CGIAR agricultural research agenda

Zoellick_1

Robert Zoellick, president of the World Bank (image on Flickr by International Monetary Fund).

Robert Zoellick, president of the World Bank, spoke today (6 July 2011) at the 40-year-anniversary celebrations of the Consultative Group on International Agricultural Research (CGIAR) at the World Bank in Washington, DC. His presentation followed a film about the historical beginnings of the CGIAR, including interviews of Norman Borlaug and Robert McNamara.

‘Both Norman Borlaug and Robert McNamara believed that it is possible to defeat hunger,’ Zoellick said. ‘They both worked to boost food production through science. And they both died within a few months of each other in 2009.’

Zoellick said that agriculture is a subject of strong personal interest for him; he grew up around farm families in the American midwest. And he said few things were as satisfying for him as speaking to farm families that had doubled, tripled or quadrupled their incomes through improved farm practices, which in turn rely on agricultural science.

Zoellick said that high food prices today are pushing 44 million people into poverty, and the global population is expected to reach 9 billion by 2050.

‘We’ll have to increase food production by 70% to feed everyone by mid-century,’ he said. ‘And we’ll have to do that with the rate of production increases dropping and in the face of climate change, which is predicted to decrease crop yields in Africa by 28%.’

Zoellick reported on some of the great achievements of the CGIAR over the last four decades. Among them, he cited the following work by the International Livestock Research Institute (ILRI) and its partners, including the Kenya Agricultural Research Institute.

There is now a vaccine for East Coast fever, which kills 1 cow every 30 seconds in 11 countries of Africa. The vaccine is expected to save more than a million cattle, with benefits worth up to USD270 million a year in the countries where the disease is now endemic.

‘I’ve been urging the G20 to put food first this year,’ said Zoellick. ‘One of my key messages at both G8 and G20 is the need to support agriculture and agricultural research.

“I see a 5-step challenge for the CGIAR,’ said Zoellick.
(1) Donor agencies increase funding to the CGIAR from USD670 million last year to USD1 billion by 2013.
(2) Donor agencies commit to multi-year predictable funding.
(3) Research institutions place greater focus on research to reduce post-harvest food losses (which can make up 20–50% of yields).
(4) Developing countries themselves increase their investments to agricultural research and development.
(5) Researchers and their supporters stand up for science and fight the current trend of cloaking ignorance in fashionable causes.

The moment is right to push the agricultural research agenda, Zoellick said. ‘The agricultural sector is fertile for innovation. And we can demonstrate the intimate links between this work and two of the big issues of our day—food security and climate change.’

Given the ammunition, he said, he’ll push this agenda forward.

Livestock and climate change: Towards credible figures

Cow in Rajasthan, India

Profile of a cow kept by the Rajasthani agro-pastoralists who have inhabited India’s state of Rajasthan (‘land of kings’ or ‘colours’), from the Great Thar Desert in the northwest to the better-watered regions of the southeast, since parts of it formed the great trading and urban Indus Valley (3000-500 BC) and Harappan (1,000 BC) civilizations (photo credit: ILRI/Susan MacMillan).

We know that livestock produce significant amounts of greenhouse gases. Just how much remains somewhat contentious, with the estimated contributions of livestock to global greenhouse gas emissions ranging from 10 to 51%, depending on who is doing the analyses, and how.

A new commentary, published in a special ‘animal feed’ issue of the scientific journal Animal Feed and Technology, examines the main discrepancies between well known and documented studies such as FAO’s Livestock Long Shadow report (FAO 2006) and some more recent estimates. The authors of the commentary advocate for better documentation of assumptions and methodologies for estimating emissions and the need for greater scientific debate, discussion and scrutiny in this area.

The authors of the new article, ‘Livestock and greenhouse gas emissions: The importance of getting the numbers right,’ are a distinguished group of experts from diverse institutions working in this area, including the Food and Agriculture Organization of the United Nations (FAO, Rome), Wageningen University and Research Centre (Netherlands), the Food Climate Research Network at the Centre for Environmental Strategy (FCRN, University of Surrey), the European Commission’s Joint Research Centre at the Institute for Environment and Sustainability (JRC, Italy), the Netherlands Environmental Assessment Agency (PBL, Bilthoven), Aarhus University’s Department of Agroecology and Environment (Denmark), New Zealand’s Ministry of Agriculture and Forestry (Wellington), the Institute Nationale de la Recherche Agronomique (France), the Agriculture and Agri-Food Canada group at Lethbridge Research Centre (Alberta) and the International Livestock Research Institute (ILRI, Nairobi).

This group of international scientists presents the case of one recent argument as follows.

‘In 2006, the FAO’s Livestock’s Long Shadow report (FAO, 2006), using well documented and rigorous life cycle analyses, estimated that global livestock contributes to 18% of global GHG [greenhouse gas] emissions. According to the study the main contributors to GHG from livestock systems are land use change (carbon dioxide, CO2), enteric fermentation from ruminants (methane, CH4) and manure management (nitrous oxide, N2O).

‘A . . . non-peer reviewed report published by the Worldwatch Institute (Goodland and Anhang 2009) contested these figures and argued that GHG emissions from livestock could be closer to 51% of global GHG emissions. In our view, this report has oversimplified the issue with respect to livestock production. It has emphasised the negative impacts without highlighting the positives and, in doing so, has used a methodological approach which we believe to be flawed.’

Mario Herrero, lead author of the Animal Feed and Technology paper, is a systems analyst and climate change specialist working at the International Livestock Research Institute (ILRI). Herrero argues that Goodland and Anhang, while claiming in the non-scientifically peer-reviewed World Watch Magazine (which is published by Worldwatch Institute) that livestock generate 51% of total anthropogenic greenhouse gas emissions rather than the 18% reported by FAO in 2007, fail to detail the methodologies they used to come up with this new figure, fail to use those methods consistently across different sectors, and fail to follow global guidelines for assessing emissions set by the Intergovernmental Panel on Climate Change and Kyoto Protocol.

Furthermore, Hererro says, the World Watch authors’ solution to livestock’s contribution to global warming—’to eat less animal products, or better still, none at all’—could push some 1 billion livestock keepers and consumers living on little more than a dollar a day into even greater poverty (small livestock enterprises are the mainstay of many poor people) and severe malnourishment (milk is among the few high-quality foods readily available to many poor people, with consumption of modest quantities of dairy making the difference between health and illness, especially in children and women of child-bearing ages).

Goodland and Anhang also fail to enlarge on any counterfactuals, such as what a world without domesticated livestock would look like.

Over a billion people make a living from livestock, says ILRI director general Carlos Seré. Most of them are among the poorest of the poor. What, other than livestock keeping, would most African and Indian farming households turn to in order to meet their needs for scarce protein, fertilizer, employment, income, traction, means of saving, and insurance against crop failure?

While many of us may find the factory farming of animals in rich countries objectionable on several grounds, Seré says, we must be responsible not to conflate industrial grain-fed livestock systems of rich producers with the family farming and herding practices of hundreds of millions of poor producers, most of whom still maintain their animals not on grain but on pasture grass and other crop wastes not edible by humans.

The biggest concern of many experts regarding livestock in developing countries, Seré says, is not their impact on climate change but rather the impact of climate change on livestock production.

The hotter and more extreme tropical environments being predicted threaten not only up to a billion livelihoods based on livestock but also supplies of milk, meat and eggs among hungry communities that need these nourishing foods most. For people living in absolute poverty and chronic hunger, the solution is not to rid the world of livestock, but rather to find ways to farm animals more efficiently and profitably, as well as sustainably.

Tara Garnett, a co-author of the new paper and a research fellow at the Centre for Environmental Strategy at the University of Surrey, in the UK, investigates issues around livestock and greenhouse gas emissions in her highly credible and readable publication Cooking up a Storm: Food, Greenhouse Gas Emissions and Our Changing Climate (2008). Garnett, who also runs the Food Climate Research Network (FCRN), which brings together nearly 2,000 individuals from a broad variety of disciplines to share information on issues relating to food and climate change, agrees with Seré on this.

By 2050, on current projections, Garnett reports, the developing world will still, on average, be eating less than half as much meat as people do in the rich world, and only a third of the milk. There is a long way to go before they catch up with developed world levels.

While there is an increasingly urgent need to reduce demand for meat and dairy products among consumers in developed countries, and also to moderate rapid growth in demand for these foods in emerging, rapidly industrializing, countries, for the world’s poorest people, small-scale livestock enterprises can increase household incomes and improve livelihoods. Greater consumption of meat and dairy products—in addition to a more diverse range of plant-based foods—can play a critical role in combatting malnutrition and enhancing nutritional status.’

Herrero and Garnett and their other co-authors conclude that ‘Livestock undoubtedly need to be a priority focus of attention as the global community seeks to address the challenge of climate change. The magnitude of the discrepancy between the Goodland and Anhang paper (2009) and widely recognized estimates of GHG from livestock (FAO, 2006), illustrates the need to provide the climate change community and policy makers with accurate emissions estimates and information about the link between agriculture and climate.

‘Improving the global estimates of GHG attributed to livestock systems is of paramount importance. This is not only because we need to define the magnitude of the impact of livestock on climate change, but also because we need to understand their contribution relative to other sources. Such information will enable effective mitigation options to be designed to reduce emissions and improve the sustainability of the livestock sector while continuing to provide livelihoods and food for a wide range of people, especially the poor. We need to understand where livestock can help and where they hinder the goals of resilient global ecosystems and a sustainable, equitable future for future generations.

‘We believe these efforts need to be part of an ongoing process, but one that is to be conducted through transparent, well established methodologies, rigorous science and open scientific debate. Only in this way will we be able to advance the debate on livestock and climate change and inform policy, climate change negotiations and public opinion more accurately.’

Read the whole post-print paper by Mario Herrero, P Gerber, T Vellinga, T Garnett, A Leip, C Opio, HJ Westhoek, PK Thornton, J Olesen, N Hutchings, H Montgomery, J-F Soussana, H Steinfeld and TA McAllister: Livestock and greenhouse gas emissions: The importance of getting the numbers right, a special issue on ‘Greenhouse Gases in Animal Agriculture—Finding a Balance between Food and Emissions’ published this month in 2011 in Animal Feed Science and Technology 166–167: 779–782 (doi: 10.1016/j.anifeedsci.2011.04.083).

Read the Goodland and Anhang article in World Watch Magazine: Livestock and Climate Change: What if the key actors in climate change are…cows, pigs, and chickens? November/December 2009.

In the crosshairs of hunger and climate change: New ILRI-CCAFS study maps the global hotspots

Please find a corrected and revised statement below, along with a link to download revised maps here: http://ccafs.cgiar.org/resources/climate_hotspots. All edits to the original article posted on this blog are reflected in RED and BOLDFACE below.

Five per cent reduction in crop season sensitivity to change capacity to cope: Corrected version

Five per cent reduction in crop season sensitivity to change capacity to cope: Corrected 13 Jul 2011 (map credit ILRI/CCAFS/Notenbaert).

A new study out today reveals future ‘hotspots’ of risk for hundreds of millions whose food problems are on a collision course with climate change. The scientists conducting the study warn that disaster looms for parts of Africa and all of India if chronic food insecurity converges with crop-wilting weather. They went on to say that Latin America is also vulnerable.

The red areas in the map above are food-insecure and intensively farmed regions that are highly exposed to a potential five per cent or greater reduction in the length of the growing season. Such a change over the next 40 years could significantly affect food yields and food access for 369 million people—many of them smallholder farmers—already living on the edge. This category includes almost all of India and significant parts of West Africa. While Latin America in general is viewed as having a ‘high capacity’ to cope with such shifts, there are millions of poor people living in this region who very dependent on local crop production to meet their nutritional needs (map credit: ILRI-CCAFS/Notenbaert).

This study matches future climate change ‘hotspots’ with regions already suffering chronic food problems to identify highly-vulnerable populations, chiefly in Africa and South Asia, but potentially in China and Latin America as well, where in fewer than 40 years, the prospect of shorter, hotter or drier growing seasons could imperil hundreds of millions of already-impoverished people.

The report, Mapping Hotspots of Climate Change and Food Insecurity in the Global Tropics, was produced by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). The work was led by a team of scientists at the International Livestock Research Institute (ILRI) responding to an urgent need to focus climate change adaptation efforts on people and places where the potential for harsher growing conditions poses the gravest threat to food production and food security.

The researchers pinpointed areas of intense vulnerability by examining a variety of climate models and indicators of food problems to create a series of detailed maps. One shows regions around the world at risk of crossing certain ‘climate thresholds’—such as temperatures too hot for maize or beans—that over the next 40 years could diminish food production. Another shows regions that may be sensitive to such climate shifts because in general they have large areas of land devoted to crop and livestock production. And finally, scientists produced maps of regions with a long history of food insecurity.

Future of Pastoralism in Africa Conference

ILRI scientist Polly Ericksen, lead author of the hotspots study (photo credit: ILRI/MacMillan).

‘When you put these maps together they reveal places around the world where the arrival of stressful growing conditions could be especially disastrous,’ said Polly Ericksen, a senior scientist at ILRI, in Nairobi, Kenya and the study’s lead author. ‘These are areas highly exposed to climate shifts, where survival is strongly linked to the fate of regional crop and livestock yields, and where chronic food problems indicate that farmers are already struggling and they lack the capacity to adapt to new weather patterns.’

‘This is a very troubling combination,’ she added.

For example, in large parts of South Asia, including almost all of India, and parts of sub-Saharan Africa—chiefly West Africa—there are 265 million food-insecure people living in agriculture-intensive areas that are highly exposed to a potential five per cent decrease in the length of the growing period. Such a change over the next 40 years could significantly affect food yields and food access for people—many of them farmers themselves—already living on the edge.

Higher temperatures also could exact a heavy toll. Today, there are 170 million food-insecure and crop-dependent people in parts of West Africa, India and China who live in areas where, by the mid-2050s, maximum daily temperatures during the growing season could exceed 30 degrees Celsius (86 degrees Fahrenheit). This is close to the maximum temperature that beans can tolerate, while maize and rice yields may suffer when temperatures exceed this level. For example, a study last year in Nature found that even with optimal amounts of rain, African maize yields could decline by one percent for each day spent above 30ºC.

Regional predictions for shifts in temperatures and precipitation going out to 2050 were developed by analyzing the outputs of climate models rooted in the extensive data amassed by the Fourth Assessment Report (AR4) from the United Nations Intergovernmental Panel on Climate Change (IPCC). Researchers identified populations as chronically food-insecure if more than 40 per cent of children under the age of five were ‘stunted’—that is, they fall well below the World Health Organization’s height-for-age standards.

CCAFS poverty and climate change hotspots presentation: Wiebke Foerch and Patti Kristjanson of CCAFS

CCAFS staff members Wiebke Foerch, based at ILRI, and Patti Kristjanson, based at the World Agroforestry Centre, hold discussions after ILRI’s Polly Ericksen presents her findings on poverty and climate change hotspots at the World Agroforestry Centre in May 2011 (photo credit: ILRI/MacMillan).

‘We are starting to see much more clearly where the effect of climate change on agriculture could intensify hunger and poverty, but only if we fail to pursue appropriate adaptation strategies,’ said Patti Kristjanson, a research theme leader at CCAFS and former agricultural economist at ILRI. ‘Farmers already adapt to variable weather patterns by changing their planting schedules or moving animals to different grazing areas. What this study suggests is that the speed of climate shifts and the magnitude of the changes required to adapt could be much greater. In some places, farmers might need to consider entirely new crops or new farming systems.’

Crop breeders at CGIAR centres around the world already are focused on developing so-called ‘climate ready’ crop varieties able to produce high yields in more stressful conditions. For some regions, however, that might not be a viable option—in parts of East and Southern Africa, for example, temperatures may become too hot to maintain maize as the staple crop, requiring a shift to other food crops, such as sorghum or cassava, to meet nutrition needs. In addition, farmers who now focus mainly on crop cultivation might need to integrate livestock and agroforestry as a way to maintain and increase food production.

CCAFS Bruce Campbell following Andy Jarvis' seminar on CCAFS

Bruce Campbell, coordinator of the CGIAR program ‘Climate Change, Agriculture and Food Security (CCAFS)’, based in Copenhagen, talks with guests at a seminar given about CCAFS by Andy Jarvis at ILRI’s Nairobi campus on 13 May 2011 (photo credit: ILRI/MacMillan).

‘International trade in agriculture commodities is also likely to assume even more importance for all regions as climate change intensifies the existing limits of national agriculture systems to satisfy domestic food needs,’ said Bruce Campbell, director of CCAFS. ‘We have already seen with the food price spikes of 2008 and 2010 that food security is an international phenomenon and climate change is almost certainly going to intensify that interdependence.’

Ericksen and her colleagues note that regions of concern extend beyond those found to be most at risk. For example, in many parts of Latin America, food security is relatively stable at the moment—suggesting that a certain amount of ‘coping capacity’ could be available to deal with future climate stresses that affect agriculture production. Yet there is cause for concern because millions of people in the region are highly dependent on local agricultural production to meet their food needs and they are living in the very crosshairs of climate change.

The researchers found, for example, that by 2050, prime growing conditions are likely to drop below 120 days per season in intensively-farmed regions of northeast Brazil and Mexico.

Growing seasons of at least 120 days are considered critical not only for the maturation of maize and several other staple food crops, but also for vegetation crucial to feeding livestock.

In addition, parts of Latin America are likely to experience temperatures too hot for bean production, a major food staple in the region.

Mario Herrero, Polly Ericksen and Wiebke Foerch prepare to listen to Andy Jarvis' seminar on CCAFS

Mario Herrero, another ILRI author of the study, with climate Polly Ericksen and CCAFS staff member Wiebke Forech, all based at ILRI’s Nairobi headquarters, wait to hear a presentation from visiting CCAFS scientist Andy Jarvis at ILRI on 13 May 2011 (photo credit: ILRI/MacMillan).

The study also shows that some areas today have a ‘low sensitivity’ to the effects of climate change only because there is not a lot of land devoted to crop and livestock production. But agriculture intensification would render them more vulnerable, adding a wrinkle, for example, to the massive effort under way to rapidly expand crop cultivation in the so-called ‘bread-basket’ areas of sub-Saharan Africa.

Philip Thornton at Andy Jarvis' CCAFS Seminar

Philip Thornton (white shirt, facing camera), of ILRI and CCAFS, and other ILRI staff following a seminar on CCAFS given by Andy Jarvis at ILRI Nairobi on 13 May 2011 (photo credit: ILRI/MacMillan).

‘Evidence suggests that these specific regions in the tropics may be severely affected by 2050 in terms of their crop production and livestock capacity. The window of opportunity to develop innovative solutions that can effectively overcome these challenges is limited,’ said Philip Thornton, a CCAFS research theme leader and ILRI scientist and one of the paper’s co-authors. ‘Major adaptation efforts are needed now if we are to avoid serious food security and livelihood problems later.’
Five per cent reduction in crop season sensitivity to change capacity to cope: Corrected version

Areas where average maximum temperatures are expected to exceed 30⁰C by 2050, corrected version (map credit: ILRI-CCAFS/Notenbaert).

Read the whole report: Mapping hotspots of climate change and food insecurity in the global tropics, by Polly Ericksen, Philip Thornton, An Notenbaert, L Cramer, Peter Jones and Mario Herrero 2011. CCAFS Report no. 5 (final version). CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Also available online at: www.ccafs.cgiar.org.

Click here for the CCAFS online media room with more materials, including corrected versions of the news release in English, Spanish, French and Chinese, and also versions of the two maps shown here in high resolution suitable for print media.

All the maps will be made available online later this year; for more information on the maps, please contact ILRI’s Polly Ericksen at p.ericksen [at] cgiar.org or CCAFS’ Vanessa Meadu at ccafs.comms [at] gmail.com.

Note: This study was led by scientists at the International Livestock Research Institute (ILRI) for the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). CCAFS is a strategic partnership of the CGIAR and the Earth System Science Partnership (ESSP). CCAFS brings together the world’s best researchers in agricultural science, development research, climate science and Earth System science, to identify and address the most important interactions, synergies and tradeoffs between climate change, agriculture and food security. The CGIAR’s Lead Centre for the program is the International Center for Tropical Agriculture (CIAT) in Cali, Colombia. For more information, visit www.ccafs.cgiar.org.

New initiative to boost food production in eastern Africa’s drylands

Ethiopia, Addis Ababa

A boy tends cattle in Ethiopia. A new initiative supported by the Climate Change, Agriculture and Food Security (CCAFS) research program of the CGIAR will boost smallholder farmers’ resilience to drought in the Horn of Africa. (Photo credit: ILRI/Gerard)

A new initiative to help pastoralists and smallholder farmers cope with the twin pressures of drought and climate change was launched recently at the Nairobi, Kenya, headquarters of the International Livestock Research Institute (ILRI).

The initiative, ‘Climate change adaptation and mitigation for communities in dryland regions,’ is conducted by a group of development partners that include the Climate Change, Agriculture and Food Security (CCAFS) research program of the Consultative Group on International Agricultural Research (CGIAR), the Food and Agriculture Organization of the United Nations (FAO), Vétérinaires San Frontières, Solidarites and Action Aid among others. The initiative will work towards securing the agro-pastoral livelihoods of poor livestock keepers in Ethiopia, Kenya and Somalia.

The meeting, held on 22 March 2011, brought together donor representatives, regional research and development partners, national research and extension representatives and non-governmental agencies engaged in promoting dryland agriculture. The meeting aimed to create awareness of the challenges facing the drylands and to share information about existing technological and institutional innovations that can address some of their most pressing challenges.

The drylands and other marginal environments of eastern Africa have high population growth and climate variability and few livelihood options other than livestock keeping. Such marginal lands around the world, however, produce about 20% of the world’s food, have rich cultural and social diversity and are inhabited by people whose traditional ways of coping with climate change can be harnessed for improved small-scale agriculture and livelihoods.

The new regional drylands initiative will help increase crop and livestock productivity in the three countries as well as add value to supply chain processes and help build supportive institutional frameworks for enhancing food production and marketing.

The initiative hopes to boost food security and livelihoods by increasing the resilience of vulnerable livestock keepers and is expected to reach about 1.3 million people at a cost of USD15 million in its first phase, which starts this year and will go on until 2013.

‘As a key partner in the project,’ said James Kinyangi, a regional program leader of CCAFS, who is based at ILRI, ‘CCAFS will apply lessons from successful past CGIAR research to intensify agricultural production in marginal environments. This should help eastern Africa’s dryland communities to develop greater resilience to climate change.’

The drylands initiative follows a workshop on dryland farming practices held in 2008 to map strategies for improving farming in eastern Africa’s drylands and identify high-priority crops for adaptation.

For more information about the regional drylands initiative visit: http://typo3.fao.org/fileadmin/user_upload/drought/docs/Dryland%20Flyer_final.pdf

To find out more about CCAFS visit: http://www.ccafs.cgiar.org/

Scientists warn of farm failures and climate migrants in Africa in a 4-plus degree world

Maize farming in Mozambique

Smallholder maize and livestock farm in Pacassa Village, in Tete Province, Mozambique (photo credit: ILRI/Mann).

As climate change negotiations begin this week in Mexico, a new study published in the journal Philosophical Transactions of the Royal Society Series A, examining the potential impact of a four-degree temperature increase on food production in sub-Saharan Africa, reports that growing seasons of much of the region’s cropped areas and rangelands will be reduced in length by the 2090s, seriously damaging the ability of these lands to grow food.

Painting a bleak picture of Africa’s food production in a 'four-plus degree world,' the study sends a strong message to climate negotiators at a time when they are trying to reach international consensus on measures needed to keep average global temperatures from rising by more than two degrees Centigrade in this century. The study calls for concerted efforts to help farmers cope with potentially unmanageable impacts of climate change.

In most of southern Africa, growing seasons could be shortened by about 20 per cent, according to the results of simulations carried out using various climate models. Growing seasons may actually expand modestly in eastern Africa. But despite this, for sub-Saharan Africa as a whole, a temperature increase of five degrees by the 2090s is expected to depress maize production by 24 per cent and bean production by over 70 per cent.

'Africa’s rural people have shown a remarkable capacity to adapt to climate variability over the centuries,' said lead author Philip Thornton, with the Kenya-based International Livestock Research Institute (ILRI), which forms part of the Consultative Group on International Agricultural Research (CGIAR). 'But temperature increases of four degrees or more could create unprecedented conditions in dozens of African countries, pushing farmers beyond the limits of their knowledge and experience.' 

It seems unlikely that international climate policies will succeed in confining global warming to a two-degree increase, and even this will require unprecedented political will and collective action, according to the study.

Many options are already available that could help farmers adapt even to medium levels of warming, assuming substantial investment in new technology, institution building, and infrastructure development, for example. But it is quite possible that the adaptive capacity and resilience of hundreds of millions of people in Africa could simply be overwhelmed by events, say the authors.

The rate of cropping season failure will increase in all parts of the region except Central Africa, according to study results. Over a substantial part of eastern Africa, crops already fail in one out of every four years. By the 2090s, higher temperatures will greatly expand the area where crops fail with this frequency. And much of southern Africa’s rainfed agriculture could fail every other season.

'More frequent crop failures could unleash waves of climate migrants in a massive redistribution of hungry people,' said Thornton. 'Without radical shifts in crop and livestock management and agricultural policies, farming in Africa could exceed key physical and socio-economic thresholds where the measures available cease to be adequate for achieving food security or can’t be implemented because of policy failures.'

'This is a grim prospect for a region where agriculture is still a mainstay of the economy, occupying 60 per cent of the work force,' said Carlos Seré, Director General of ILRI. 'Achieving food security and reducing poverty in Africa will require unprecedented efforts, building on 40 years of modest but important successes in improving crop and livestock production.'

To help guide such efforts, the new study takes a hard look at the potential of Africa’s agriculture for adapting successfully to high temperatures in the coming decades; the study also looks at the constraints to doing so.

Buffering the impacts of high temperatures on livestock production will require stronger support for traditional strategies, such as changing species or breeds of animals kept, as well as for novel approaches such as insurance schemes whose payouts are triggered by events like erratic rainfall or high animal death rates, according to the study.

However, Thornton says that uncertainty about the specific impacts of climate change at the local level, and Africa’s weak, poorly resourced rural institutions, hurt African farmers' ability to adopt such practices fast enough to lessen production losses. Moreover, governments may not respond to the policy challenges appropriately, as demonstrated by the 2008 food crisis, when many countries adopted measures like export bans and import tariffs, which actually worsened the plight of poor consumers.

The study recommends four actions to take now to reduce the ways climate change could harm African food security.

1.     In areas where adverse climate change impacts are inevitable, identify appropriate adaptation measures and pro-actively help communities to implement them.

2.     Go 'back to basics' in collecting data and information. Land-based observation and data-collection systems in Africa have been in decline for decades. Yet information on weather, land use, markets, and crop and livestock distributions is critical for responding effectively to climate change. Africa’s data-collection systems could be improved with relatively modest additional effort.

3.     Ramp up efforts to maintain and use global stocks of crop and livestock genetic resources to help Africa’s crop and livestock producers adapt to climate change as well as to the shifts in disease prevalence and severity that such change may bring.

4.     Build on lessons learned in the global food price crisis of 2007–2008 to help address the social, economic and political factors behind food insecurity.

The CGIAR and the Earth System Science Partnership recently embarked on the most comprehensive program developed so far to address both the new threats and new opportunities that global warming is likely to cause agriculture in the world’s developing countries. The Climate Change, Agriculture and Food Security program assembles relevant experts to work with decision makers at all levels—from government ministries to farmers’ fields—to translate knowledge into effective action.

The ILRI study underlines the urgency and importance of that research. It will inform the discussions of some 500 policy makers, farmers, scientists and development experts expected to attend an ‘Agriculture and Rural Development Day’, on 4 December, which will be held alongside a two-week United Nations Conference on Climate Change taking place in Cancún, Mexico. Participants at the one-day event will identify agricultural development options for coping with climate change and work to move this key sector to the forefront of the international climate debate.

'A four-plus degree world will be one of rapidly diminishing options for farmers and other rural people,' said Seré. 'We need to know where the points of no return lie and what measures will be needed to create new options for farmers, who otherwise may be driven beyond their capacity to cope.'

For more information on the program on Climate Change, Agriculture and Food Security, visit www.ccafs.cgiar.org