New program aims to spur state-of-the-art biosciences innovation to fight food insecurity, climate change and environmental degradation across eastern Africa

Bio-Innovate launch: Swedish Embassy's Bjorn Haggmark

Launched today at the International Livestock Research Institute (ILRI), the Bioresources Innovations Network for Eastern Africa Development (Bio-Innovate) program will support the fight against food insecurity in eastern Africa (photo credit: ILRI/MacMillan).

A new program that provides grants to bioscientists working to improve food production and environmental management in eastern Africa was launched today at the Nairobi headquarters of the International Livestock Research Institute (ILRI).

The newly established Bioresources Innovation Network for Eastern Africa Development (Bio-Innovate) Program—the first of its kind in Africa—provides competitive grants to African researchers who are working with the private sector and non-governmental organizations to find ways to improve food security, boost resilience to climate change and identify environmentally sustainable ways of producing food.

In its first three-year phase, the program is supporting five research-based projects working to improve the productivity of sorghum, millet, cassava, sweet potato, potato and bean farmers; to help smallholder farmers adapt to climate change; to improve the processing of wastes in the production of sisal and coffee; and to better treat waste water generated in leather processing and slaughterhouse operations.

In its second three-year phase, beginning mid-2011, Bio-Innovate will help build agricultural commodity ‘value chains’ in the region and a supportive policy environment for bioresource innovations.

The five-year program is funded by a USD12-million grant from the Swedish International Development Agency (Sida). Bio-Innovate is managed by ILRI and co-located within the Biosciences eastern and central Africa (BeCA) Hub at ILRI’s Nairobi campus. Bio-Innovate will be implemented in Burundi, Ethiopia, Kenya, Rwanda, Tanzania and Uganda.

‘By emphasizing innovations to help drive crop production in the six partner countries, Bio-Innovate is working at the heart of one of the region’s greatest challenges—that of providing enough food in the face of climate change, diversifying crops and addressing productivity constraints that are threatening the livelihoods of millions,’ said Carlos Seré, ILRI’s director general.

An increasingly large number of poor people in the developing world are hungry, or, in development-speak, ‘food insecure.’ In sub-Saharan Africa, where agricultural production relies on rainfed smallholder farming, hunger, environmental degradation and climate change present a triple threat to individual, community and national development. In eastern Africa alone, over 100 million people depend on agriculture to meet their fundamental economic and nutritional needs.

Although some three-quarters of the African population are involved in farming or herding, investment in African agricultural production has continued to lag behind population growth rates for several decades, with the result that the continent has been unable to achieve sustainable economic and social development.

‘Bioresources research and use is key to pro-poor economic growth,’ says Seyoum Leta, Bio-Innovate’s program manager. ‘By focusing on improving the performance of crop agriculture and agro-processing, and by adding value to primary production, we can help build a more productive and sustainable regional bioresources-based economy.’

Bio-Innovate works closely with the African Union/New Partnership for Africa’s Development (AU/NEPAD) and its new Planning and Coordinating Agency, as well as with the councils and commissions for science and technology in eastern Africa, to encourage adoption of advances in biosciences. The program builds on AU/NEPAD’s Consolidated Plan of Action for Africa’s Science and Technology and the Comprehensive Africa Agriculture Development Program (CAADP).

‘African governments are appreciating the importance of regional collaboration,’ says Ibrahim Mayaki, the chief executive officer of NEPAD. ‘Collaborations such as this, in science and technology, will enable the continent to adapt to the rapid advances and promises of modern biosciences.’

Bio-Innovate has already established partnerships with higher learning institutions and national agricultural research organizations, international agricultural research centres and private industries working both within and outside eastern Africa.

‘Bio-Innovate is an important platform for pooling eastern African expertise and facilities through a regional Bioresources Innovations Network,’ says Claes Kjellström, Bio-Innovate Sida representative at the Embassy of Sweden in Nairobi. ‘We believe this program will enable cross-sectoral and interdisciplinary biosciences research and enhance innovations and policies that will advance agricultural development in the region.’

The Bio-Innovate team is working with these partners to help guide development and adoption of homegrown bioscience policies in its partner countries and to spread knowledge of useful applications of bioscience. In the coming years, Bio-Innovate staff envision eastern Africa becoming a leading region in the use of biotechnology research and approaches for better food production and environmental management.

Some presentations from today’s launch:

More information about Bio-Innovate:
Short Blip TV clips

Three interviews of Seyoum Leta, Bio-Innovate program manager:

http://ilri.blip.tv/file/4882255/

http://ilri.blip.tv/file/4882101/

http://ilri.blip.tv/file/4881914/

Four interviews of Gabrielle Persley, senior advisor to ILRI’s director general:

http://ilri.blip.tv/file/4882211/

http://ilri.blip.tv/file/4882005/

http://ilri.blip.tv/file/4882481/

http://ilri.blip.tv/file/4882486/

Website:

http://bioinnovate-africa.org/

Pictures:

https://www.flickr.com/photos/ilri/sets/72157624891160295/

Forestalling the next plague: Building a first picture of all diseases afflicting people and animals in Africa

Typical mixed crop-livestock farming of western Kenya

An ILRI-Wellcome project is investigating the disease pathogens circulating in both people and animals in the communities outside the border town of Busia, Kenya, where smallholders mix crop growing with livestock raising (photo credit: ILRI/Pye-Smith).

A project funded by the Wellcome Trust on zoonotic diseases was broadcast last week on an Australian television program called ‘Catalyst’. The show ran on Thursday, 10 March 2011, at 20:00 Australian time. The research described in the program is supported by the International Livestock Research Institute (ILRI), where the project’s principal investigator, Eric Fevre, is hosted.

The television program interviews Fevre and his colleagues Lian Doble, a veterinarian managing laboratory work in western Kenya, and  Appolinaire Djikeng, technology manager of a Biosciences eastern and central Africa (BecA) Hub, located on ILRI’s Nairobi, Kenya, campus.

Fevre and Doble and their team are investigating what disease pathogens of both people and animals are circulating near the border town of Busia, a very poor, densely populated area whose communities mix crop growing with livestock raising on small plots of land. Research such as this that is looking at both human and animal diseases is rare but urgently needed because the close relations of people and farm animals in many poor regions, as well as the existence of monkeys and other wildlife nearby, is a ‘recipe for diseases’ jumping from animals to people. If we’re going to manage to forestall another zoonotic plague such as bird flu or HIV/AIDS, we’re going to have to conduct more of such ‘one health’ investigations that look at exactly what diseases are being transmitted between animals and people. The research project in western Kenya is part of a larger study being conducted by the BecA Hub to look at diseases of animals and people across eastern Africa. The BecA Hub team is using genomics and meta-genomics, and ‘4 million bucks of computing power,’ to build a picture of the complex relations of disease pathogens circulating in the region.

Eric Fevre and pit latrine in Busia, Kenya

Eric Fevre, who leads the ILRI-Wellcome project investigating the disease pathogens circulating in both people and animals in Busia, points out a pit latrine frequented by pigs as well as people, where disease transmission between the two species is most likely to occur (photo credit: ILRI/Pye-Smith).

A transcript of the Australian television program on this research follows.

NARRATION
Africa, the cradle of humanity and renowned for its wildlife. It could also be the origin of the next global pandemic. It’s long been known that people and animals living close together—well, that’s a recipe for disease. But exactly which diseases? And if new diseases are creeping into the system? Well, that’s something they’re trying to find out here in western Kenya. They’re called zoonotic diseases: infections that can jump from animals to people.

Eric Fevre
There are lots of zoonotic infections. In fact, about 60 per cent of all human diseases are of zoonotic origin.

NARRATION
So this team headed by Eric Fevre is taking a much closer look at the health of people and livestock in a densely populated region of western Kenya.

Eric Fevre
It seems to be obvious that zoonotic infections will occur more in people who keep livestock than in those who don’t. Whether that’s the case has never been formally established.

Lian Doble
If you look around here you don’t see the cattle in a field, in a fenced field or in a barn away from the people. Cattle are tethered within the compound that everybody’s working in, the chickens are loose around, going in and out of the houses. It’s a much more integrated system than anything we really see at home.

NARRATION
The kinds of problems that this environment creates are readily apparent.

Eric Fevre
We’re in a mixed crop-livestock production system where people are keeping a few animals. And as you can see behind me here, it’s the rainy season and people have recently planted their new crops. And this is an area of interaction between the croplands and the animals. And you can see behind over there behind those fields is some forest. And there might be a watercourse flowing through that forest, for example, where the animals are going to water. And that’s where the exciting things happen from a disease transmission point of view.

NARRATION
Part of the team focus on human health, taking a range of samples from people in the village as well as a detailed account of their medical history and current living situation. Meanwhile, others in the team have a look at the livestock.

Lian Doble
What we do know is that there are a large number of diseases that circulate between animals and humans. The problem is that a lot of these diseases cause signs which are very similar to other human diseases like malaria and human tuberculosis. What isn’t known is actually how many of the diseases that are mainly diagnosed as malaria actually are another disease caused by the pathogens found in cattle. So we’re just trying to find out what diseases she has and what are shared with the people that she lives with.

Paul Willis
And does she look healthy?

Lian Doble
She’s feisty and she’s quite healthy so we’ll see what she might have been carrying. And we can tell you later in the lab.

NARRATION
Samples are taken back to field laboratories in the town of Busia on the Ugandan border.

The ILRI-Wellcome Trust laboratory in Busia, Kenya

The ILRI-Wellcome Trust animal-human laboratory in Busia, Kenya (photo credit: ILRI/Pye-Smith).

Eric Fevre
In this place we’ve got a human and an animal lab next door where we process the material that comes in from the field. One of the things that we really need to do is look at fresh material. Because once the samples get a bit old, the parasites become a bit difficult to identify. And the second important thing is that we of course feed back to the participants of our study. So results that we get in the lab here are used directly by the clinicians working in the field to decide what treatments they should be giving people. So that’s one of the direct ways that our research project feeds back into the community.

NARRATION
This detailed look at the community health of a whole region is showing many expected results, and a few surprises.

Eric Fevre
One of the diseases that we’re testing for is brucellosis. And looking at the official reports there isn’t any brucellosis in this region. But we have detected brucellosis both in animals and in people and so already that’s what’s telling us that there are things circulating here that official records don’t pick up.

NARRATION
There seems to be a lot of malaria around, but Eric’s team are finding that many cases are masking something much more sinister.

Eric Fevre
Often it won’t be malaria. It will be something else. And there are a multitude of different pathogens that cause fever of the type that malaria also causes. And that’s a real problem. Because somebody with a low income might need to, say, sell one of their animals to then go to the clinic, get a diagnosis, buy some anti-malarial drugs. They don’t work because the person actually has sleeping sickness. So they go back to a different clinic. Or to a traditional healer. They get drugs that don’t work for the infection that they have. And so on and so on, five, six, seven times, travelling maybe ten kilometres each time. That’s a huge economic burden on them. And then finally they get properly diagnosed when they’re in the late stage of their infection. And it would have been much easier to treat them if they’d have been caught earlier on.

NARRATION
It’s a very complex picture that is emerging, one that could be simplified by some basic technology.

Lian Doble
Thirty per cent of our participants don’t have access to a latrine. You can imagine what that means. And that’s something that could be very actually quite easily sorted out with some education and some money and would sort out all sorts of other diarrhoeal diseases, which are one of the huge killers of young children in Africa.

Biosciences eastern and central Africa hub platform

One of the ultra-modern laboratories at the Biosciences eastern and central Africa (BecA) Hub ‘platform’ hosted and managed by ILRI in Nairobi, Kenya (photo credit: ILRI/White).

NARRATION
Back in Nairobi another team is taking a different look at the spread of diseases across east Africa.

NARRATION
Appolinaire Djikeng heads up a team collecting samples of animals and people from a wide swath across Kenya.

Appolinaire Djikeng
So essentially at the moment we are trying to cover the east African region. But of course we would like to once we establish our processes and data management skills and data analysis skills we like to expand this to other parts of Africa.

NARRATION
The first step in the labs is to figure out exactly what spread of diseases are present in their samples.

Appolinaire Djikeng
You are able to go in there, look at the, the complex composition of the viruses, at the pathogens or at the small organisms that exist in them in doing it that way you are able to come up with a catalogue of potential organisms that exist in there.

NARRATION
And this analysis goes deep into the DNA of the viruses and pathogens that are found, tracking minute changes in their genetic make-up that allows Appolinaire’s team to follow the spread of individual strains of a disease.

Appolinaire Djikeng
We have a reasonably good bioinformatic infrastructure here for storing that data and extracting them, looking at specific parameters from that particular data base. With so many samples from such a wide geographical area and with so much information for each individual sample these guys are dealing with a lot of data and so they brought in four million bucks worth of computing grunt. With so many samples from such a wide geographic area and with so much information for each individual sample these guys are dealing with a lot of data. So they brought in four million bucks worth of computing grunt.

NARRATION
There are several teams looking at zoonotic diseases in Kenya, but the impact of their work is global.

Appolinaire Djikeng
The threat of emerging and re-emerging infectious diseases are no longer restricted to countries like central Africa or sub-Saharan Africa So I think now we have to put this work in the context of the global effort across the world. Trying to make sure that even remote parts of the area do have resources and capabilities to begin to do good and accurate diagnostics of what could be emerging.

Eric Fevre
We actually use the data that we gather to, to try and understand how these things are being transmitted, how the fact that your animal has this disease impacts on your risk at a population scale. And, and use that to then try and understand the, the process of transmission of these diseases.

Lian Doble
The next big disease problem is very likely to be a zoonotic disease so doing this sort of work and then leaving it isn’t an option. It needs to be ongoing and, and build. This is the start of something and we’ll build on it from here.

Download this Catalyst show from Australia’s ABC website (select ‘Zoonosis’ 10/3/2011).

And check out a blog by Paul Willis about the adventures of filming in Kenya’s border town of Busia: Coming to an end, 7 March 2011.

Here’s some of what Paul Willis has to say in his blog about this film project:
‘Busia is a hard place; a border crossing town riddled with grinding poverty and hard living. The main street, the only sealed road through town, is frequently clogged with a seemingly endless string of trucks waiting to cross the border into Uganda. Because Uganda, Rwanda and Burundi are all landlocked nations, every drop of fuel and most freight coming into the country has to be trucked in from Mombasa and most of that comes through Busia. . . . This area of Kenya has some of the most intensively farmed land in East Africa. The whole landscape is divided into small plots with clusters of mud and thatch huts scattered among them. Here people live cheek-by-jowl with their crops and animals. It’s a recipe for diseases to jump from animals to people. Add strips of forested vegetation inhabited by a variety of monkeys and other native mammals and the chances of new diseases leaping into the human population goes up dramatically. We’re here to report on the work of a dedicated group trying to get a handle on exactly what diseases are in this chaotic system. It’s hard work, in one of the hotter areas of Kenya, and the study is spread over a huge area. . . .’

‘Unlocking the value of the cow’: New project to identify the best breeds for East Africa’s small-scale dairy producers

woman and cows

A small-scale dairy farmer with her cows in Uganda. A new three-year project will identify and make available appropriate dairy cows for smallholders in East Africa to help them increase their milk yields (photo credit: EADD).

A new project identifying appropriate dairy breeds for small-scale farmers in East Africa, and making these breeds more available in the region, was launched in February 2011 at the Nairobi campus of the International Livestock Research Institute (ILRI). The Dairy Genetics East Africa project—a partnership between ILRI; the University of New England, in Australia; and PICOTEAM, a consultancy group facilitating change processes—will help smallholders obtain the most appropriate cows for their farms so as to increase their milk yields and improve their livelihoods.

Speaking to dairy stakeholders from Kenya, including officials from Kenya’s Ministry of Livestock Development, the East Africa Dairy Development (EADD) project and other dairy industry development partners, at the launch on 9 February 2011, Okeyo Mwai, a researcher and the project’s coordinator at ILRI, explained that even though smallholder dairying is booming in parts of East Africa, such as in Kenya’s central region and the north and southern Rift Valley areas, where farmers have adopted improved animal breeds and intensified milk production, many more smallholders lack research-based knowledge about which dairy breeds are best suited for their farms and production systems and information about where to obtain them. According to Mwai, ‘Kenya’s dairy sector currently does not have a clear “breeding strategy.”’ That means that many poor smallholders are unable to take advantage of breeds that best suit their situations.

In the absence of appropriate breeding strategies and the ready supply of appropriate replacement stock, farmers face an unpredictable, unreliable and often costly replacement processes. Many are forced to replace their animals from their existing animals or from their neighbours. Others go to large-scale commercial farms and end up ‘upgrading’ to the main commercial dairy breeds even where these don’t suit their farms.

This project will determine the breed composition of cows currently kept in the project areas, the breeds smallholders prefer and the reasons for their preferences, and which breeds perform best under specific conditions. ‘This information will help us assess the relative fit of the various breeds to different production systems,’ says Ed Rege, a team leader at PICO. ‘We’ll then develop partnerships and business models with the private sector to breed, multiply and continuously supply the best-performing dairy breeds to farmers at affordable prices.’

The project will be implemented in five sites in western Kenya and three sites in Uganda. The first phase of the project will start with gathering information to assess the relative performance of breeds in the sites, setting up partnerships with other stakeholders in dairy development in the region and developing business models that will be carried out the later (phase 2 and 3) stages of the project.

In the first phase, project staff will collect information on about 3000 cows based on two monthly farm visits made over a period of 18 months. Field agents will compile information on the performance of the cows vis-vis farm-level inputs for a cost-benefit analysis of the different breeds. The agents will also collect information on farmer-perceived risks associated with different breeds, on means of livelihoods of the farmers, on any gender-specific preferences for certain breeds, and on farmer use of the various breeding services available and their costs.

The breed compositions will be obtained using advanced genotyping technology, which will be led by John Gibson, the project’s principal investigator, who is based at Australia’s University of New England. This information will be combined with cow and household data to identify the most appropriate breeds for various dairy production systems and household circumstances.

‘This project will harness the diverse expertise of the key partners, and combine the latest technologies with tried and tested methods of engaging with the community, to answer critical questions much more rapidly and accurately than has been possible in the past,’ said Gibson, who formerly worked at ILRI as a livestock geneticist.

Participants in the meeting expressed their support for the project, noting its focus on cattle genetic improvement—an area that has received inadequate research attention in the region. Alex Kirui, country director of the non-governmental organization Heifer International, said the project’s focus on ‘giving farmers the right breed for given circumstances’ is an essential requirement if the dairy industry is to be competitive enough to meet the high and increasing regional demand for fresh milk and other dairy products. Moses Nyabila, regional director for the East Africa Dairy Development Project, said the project would ‘unlock the value of the cow, which is a key asset for smallholder farmers.’

Results from the project’s first phase will guide future dairy pilot studies in East Africa and will inform a comparative study of the South Asian dairy industry.

The project is funded by the Bill and Melinda Gates Foundation. It started in September 2010 and is scheduled to end early in 2013.

For more information visit: https://www.ilri.org/node/598

View presentations from the meeting

Help us refine the CGIAR’s livestock and fish research proposal

In September 2010, four CGIAR Centers – CIAT, ICARDA, ILRI and WorldFish – formally submitted a proposal on ‘livestock and fish’ to the CGIAR Consortium Board (CB).

We just received feedback and guidance on the proposal. Overall, the Consortium Board “appreciates the innovations in this proposal, and its overall quality. The Board considers that, with a few additional improvements, the proposal will be ready to be submitted to the Fund Council.”

The Board and the reviewers also raise some important questions about our proposal: We need your help to respond to some of the critical questions raised by the reviewers:

Question 1: Can we really expect livestock and fish production ‘by the poor’ to contribute meaningfully to nutrition ‘for the poor’?

Question 2: How best to partner with the private sector in pro-poor livestock and fish value chain development?


New project to help Vietnamese and other farmers conserve their native livestock breeds

Hmong girl hold native black chicken of Viet Nam A native black pig of Viet Nam

Left: A Hmong girl, 13-year-old Hi Hoa Sinh, holds a native black chicken in the village of Lung Pu, northern Viet Nam; Right: One of Viet Nam’s native black pigs on the farm of Ma Thi Puong, near the northern town of Meo Vac (photo credit: ILRI/Mann).

A project funded by the Global Environment Facility has selected Vietnam, a country with a wealth of livestock diversity, as one of four countries in which to implement a project to conserve livestock genotypes.

The diversity is deteriorating due to the popularization of new breeds together with the commercialization of livestock production. To preserve indigenous livestock breeds, the Global Environment Facility and the International Livestock Research Institute (ILRI) have selected 4 countries—Vietnam, Bangladesh, Pakistan and Sri Lanka—to implement the project ‘Developing and applying supporting tools on the conservation and sustainable utilization of the genetic diversity of livestock and their wild relatives.’

Vietnam’s Ministry of Agriculture and Rural Development has made the National Institute of Animal Husbandry as the Vietnamese partner in the project.

The project aims to enhance livestock keepers’ awareness of the importance of the genetic conservation of indigenous livestock while helping them to raise their incomes through adoption of indigenous livestock breeds. The project is being implemented over 4 years (2010–2012) in Vietnam’s Son La and Bac Ninh provinces, with a focus on indigenous chicken and pig breeds. The project will train farmers on survey methods and data collection; on ways to maintain their use of indigenous animals; on livestock management; and on business skills in such areas as as tourism with traditional cuisine and cultural activities.

Basic information about valuable indigenous breeds and representative animals is needed, as is the capacity to prioritize, monitor and manage them at both scientific and farm operational levels. Stakeholder groups need to be empowered with knowledge and conducive operational environments in which they can make decisions that work best for them.

Agriculture in the partner countries in this project contributes 20 to 26% of gross domestic product, of which livestock contributes approximately 15 to 20% in terms of income, insurance, food (meat, milk, eggs), hides/skin, traction and manure. It is mostly smallholder farmers who are dependent on indigenous breeds. These animals have evolved in diverse tropical environments and possess valuable traits such as disease resistance, adaptation to harsh environments, including heat tolerance and ability to utilize poor quality feeds, attributes essential for achieving sustainable agriculture in low-input production systems. However, it is still largely unknown which breeds hold significant genetic diversity or specific genes that should be targeted for conservation and/or incorporation into breeding programs. In the meantime, crossbreeding with exotic breeds is increasing and indigenous breeds are being lost.

The development objectives of this project are to help conserve the indigenous livestock of the partner countries for future generations and to help increase the contribution these native breeds make to the livelihoods of poor people. The first goal of the project is to develop and to make available effective tools to support decision making for the conservation and sustainable use of indigenous farm animals and their wild relatives in developing countries.

For more information, see the project’s description on ILRI’s Biotechnology Theme webpage.

Why technical breakthroughs matter: They helped drive a cattle plague to extinction

Community animal health worker vaccinating animals against rinderpest in Karamajong, Uganda

Tom Olaka, a community animal health worker in Karamajong, northern Uganda, was part of a vaccination campaign in remote areas of the Horn of Africa that drove the cattle plague rinderpest to extinction in 2010 (photo credit: Christine Jost).

A superb example of why technical breakthroughs matter is reported in the current issue (22 October 2010) of the leading science journal, Science.

The eradication of rinderpest from the face of the earth, probably the most remarkable achievement in the history of veterinary science, is a milestone expected to be announced in mid-2011 pending a review of final official disease status reports from a handful of countries to the World Organisation for Animal Health.

A plague of cattle and wild ungulates, rinderpest would not have been eradicated without such a technical breakthrough. This was the development of an improved vaccine that did not require a 'cold chain' and thus could be administered in some of the most inhospitable regions in the Horn of Africa, where the virus was able to persist due to lack of vaccination campaigns in these hotspots.

Rinderpest is a viral livestock disease that has afflicted Europe, Asia and Africa for centuries. It killed more than 90 per cent of the domesticated animals, as well as untold numbers of people and plains game, in Africa at the turn of the 19th century, a devastation so complete that its impacts are still felt today, more than a century later. The last-known outbreak of rinderpest occurred in Kenya in 2001.

The key technical breakthrough in this effort involved development of an improved vaccine against rinderpest. The original vaccine was developed at the Kenya Agricultural Research Institute (KARI) laboratories. In 1990, Jeffrey Mariner, a veterinary epidemiologist who at that time was at the Tufts Cummings School of Veterinary Medicine and working with the Africa Union-Inter-African Bureau for Animal Resources (AU-IBAR), improved the vaccine by producing a thermostable version that did not require refrigeration up to the point of use. This allowed vets and technicians to backpack the vaccine into remote war-torn areas, where vet services had broken down and international agencies dared not send personnel. The AU-IBAR led the Pan-African Rinderpest Campaign, which coordinated the efforts that resulted in the eventual eradication of rinderpest from Africa.

Now working in the Nairobi laboratories of at the International Livestock Research Institute (ILRI), Mariner says that just as important as this technological advance was getting the development community to begin to address how people work together. Mariner and his colleagues at AU-IBAR themselves took three innovations as lessons from the rinderpest eradication campaign: (1) community-based vaccination programs, (2) participatory surveillance systems based on local knowledge, and (3) optimized control strategies that target high-risk communities through.

‘We must examine issues from the perspective of each group of stakeholders involved and visualize how proposed changes would affect them,’ says Mariner. ‘The power relationships of the groups also need to be considered. Advocates for change must then craft a new vision for how the various stakeholder groups will function that is sufficiently exciting to get people to risk change.’

Excerpts from the Science article, by Dennis Normille, follow.
'Rinderpest, an infectious disease that has decimated cattle and devastated their keepers for millennia, is gone. The United Nations Food and Agriculture Organization (FAO) announced on 14 October in Rome that a 16-year eradication effort has succeeded and fieldwork has ended.

'“This is the first time that an animal disease is being eradicated in the world and the second disease in human history after smallpox,” FAO Director-General Jacques Diouf said in his World Food Day address in Rome the next day.

'“It is probably the most remarkable achievement in the history of veterinary science,” says Peter Roeder, a British veterinarian involved with FAO’s Global Rinderpest Eradication Programme (GREP) from its launch in 1994 until he retired in 2007. For the veterinarians who participated in the effort, the achievement is particularly poignant. . . .

'One formality remains: The Paris-based World Organisation for Animal Health (OIE) still must complete the certification of a handful of countries as rinderpest free. OIE is likely to adopt an official declaration recognizing the demise of the disease at its May assembly. Meanwhile, animal-disease fighters have already been applying lessons learned from the rinderpest campaign and pondering which animal disease might be the next target for eradication.

'Although nearly forgotten in much of the West, as recently as the early 1900s, outbreaks of rinderpest—from the German for “cattle plague”—regularly ravaged cattle herds across Eurasia, often claiming one-third of the calves in any herd. The virus, a relative of those that cause canine distemper and human measles, spreads through exhaled droplets and feces of sick animals, causing fever, diarrhea, dehydration, and death in a matter of days. It primarily affects young animals; those that survive an infection are immune for life.

'When the virus hit previously unexposed herds, the impact was horrific. In less than a decade after the virus was inadvertently introduced to the horn of Africa in 1889, it spread throughout sub-Saharan Africa, killing 90% of the cattle and a large proportion of domestic oxen used for plowing and decimating wild buffalo, giraffe, and wildebeest populations. With herding, farming, and hunting devastated, famine claimed an estimated one-third of the population of Ethiopia and two-thirds of the Maasai people of Kenya and Tanzania. . . .

'In 1994, when rinderpest was entrenched in central Africa, the Arabian Peninsula, and a swath stretching from Turkey through India and to Sri Lanka, FAO brought together three regional rinderpest-control programs into GREP and set the goal of eliminating the disease by 2010. . . .

'The key technical breakthrough was the recognition that the virus was re-emerging from just a handful of reservoirs that could be the targets of intensive surveillance and vaccination campaigns. In 1990, Jeffrey Mariner, then at Tufts University School of Veterinary Medicine (now the Cummings School of Veterinary Medicine), had developed an improved vaccine that did not require refrigeration up to the point of use. This allowed vets and technicians to backpack vaccine into remote areas. One of the reservoirs was in the heart of war-torn eastern Africa, where vet services had broken down and international agencies dared not send personnel. GREP relied on local pastoralists to track the disease and on trained community animal health workers to administer the vaccine to quell outbreaks.

'. . . The virus was last detected in 2001 in wild buffaloes in Meru National Park in Kenya, on the edge of the Somali ecosystem.

'What comes next? Some veterinary experts question whether the international community is ready to take on another massive eradication campaign, but one disease mentioned as a possible eradication target is peste des petites ruminants (PPR), which is highly contagious and lethal among sheep and goats. Related to the rinderpest virus, the PPR virus has long circulated in central Africa, the Middle East, and the Indian subcontinent and has recently spread to Morocco. . . .'

ILRI's Jeff Mariner is now working on an improved vaccine for this disease.

—-

Read the whole article at Science (registration needed to read the full article): Rinderpest, deadly for cattle, joins smallpox as a vanquished disease, 22 October 2010.

To find out what the eradication of rinderpest means for livestock farmers around the world, listen to the following interview featuring John McDermott, ILRI's deputy director general.

Scientists meet in Ethiopia to broaden market opportunities for Africa’s livestock farmers, including its women farmers

Village women and livestock in Niger

Women and livestock in Niger: Leading scientists in African agriculture are gathering, this week, in Ethiopia, to discuss the challenges and opportunities of commercializing livestock agriculture in Africa (photo credit: ILRI/Mann)

As agricultural leaders across the globe look for ways to increase investments in agriculture to boost world food production, experts in African livestock farming are meeting in Addis Ababa this week to deliberate on ways to get commercialized farm production, access to markets, innovations, gender issues and pro-poor policies right for Africa’s millions of small-scale livestock farmers and herders.

More than 70 percent of Africa’s rural poor are livestock farmers. Each farm animal raised is a rare source of high-quality food, particularly of dietary protein, minerals, vitamins and micronutrients, for these households. Pastoralists, who rely on herding their animal stock to survive in the continent’s dry and otherwise marginalized environments, also make up a significant number of Africa’s population.

‘There is a growing recognition by governments and donors that expanding investment in the agricultural sector is a cornerstone for alleviating poverty and building assets in Africa and other developing regions,’ said Carlos Seré, director general of the International Livestock Research Institute (ILRI).

‘Smart investments targeting the developing world's growing numbers of livestock keepers (who make up about 1 billion people today) is a win-win-win,’ said Seré. ‘Such investments promise not only to greatly increase global food security but also to generate profits for both poor livestock producers and agribusinesses.’

Livestock production today employs more than 1.3 billion people globally. Most African small-scale farmers practice mixed farming systems that combine both crop farming and livestock keeping. Globally, these mixed systems produce the majority of the world’s food staples, including 89 percent of the maize, 91 percent of the rice, nearly 75 percent of the milk and 68 percent of the beef consumed.

Livestock-based enterprises are pathways out of poverty for many people in Africa, for whom animals are a source of nourishing foods and regular incomes. With demand for milk, meat and eggs rising fast in many developing countries, the raising and marketing of animals and animal products also allows many people to take advantage of the new growth opportunities in this sector.

Despite the vibrancy of the livestock sector in Africa, much of the investments in African agriculture for food security to date has focused almost exclusively on crop farming. That is a mistake, says Seré, as are many investments made to boost crop and livestock production systems independently.

A livestock scourge eradicated
This is an opportune time for a meeting of Africa’s leading livestock experts. On 16 October 2010, to mark the United Nations World Food Day, the Food and Agriculture Organization of the United Nations and other world bodies chose to celebrate the eradication of rinderpest from the face of the earth. Probably the most remarkable achievement in the history of veterinary science, this milestone is expected to be announced in mid-2011, pending a review of final official disease status reports from a handful of countries to the World Organisation for Animal Health.

Rinderpest is a viral livestock disease that has afflicted Europe, Asia and Africa for centuries. It killed more than 90 percent of the domesticated animals, as well as untold numbers of people and plains game, in Africa at the turn of the 19th century, a devastation so complete that its impacts are still felt today, more than a century later. The last-known outbreak of rinderpest occurred in Kenya in 2001.

The key technical breakthrough in this effort involved development of an improved vaccine against rinderpest that did not require refrigeration up to the point of use. This allowed vets and technicians to backpack the vaccine into remote war-torn areas where the disease was a major problem. The AU-IBAR led the Pan-African Rinderpest Campaign, which coordinated the efforts that resulted in the eventual eradication of rinderpest from Africa.

Livestock conference to address main constraints to livestock production in Africa
It is against this background that leading scientists in African agriculture are gathering 25–28 October 2010 at the United Nation Conference Centre in Addis Ababa, Ethiopia, to discuss the challenges and opportunities of commercializing livestock agriculture in Africa at the Fifth All African Society of Animal Production.

Carlos Sere at the opening of the AASAP Conference

Carlos Seré, director general of the International Livestock Research Institute, gives a keynote address during the opening of the fifth all African society of animal production (photo credit: ILRI/Habtamu)

Among specific areas to be addressed are livestock trade and markets, pastoralism and natural resource management, animal genetics and commercialization, climate change and its effects on livestock systems, livestock feeds, and the delivery of livestock services to smallholders and herders.

Despite its wealth of livestock resources, Africa produces livestock at relatively low levels, due to a range of technical, socioeconomic and biological challenges faced by smallholders and herders on the continent. These include weak policies and veterinary and other institutions; widespread parasitic, tropical and other livestock and zoonotic diseases; poor-quality feeds; inadequate inputs for livestock production; insufficient access to livestock markets and market information; and low market prices.

‘This conference is addressing policy and strategy gaps that have prevented African livestock producers from making the most of their livestock resources,’ said Tadelle Dessie, a scientist with ILRI. ‘Addressing these gaps should help raise the level of investment in livestock production and improve market access for small-scale livestock producers.’

Fix gender-based problems in livestock livelihoods
One potent way to enable Africa’s farmers and herders to benefit more from livestock production, say many who have researched the topic, is to redress gender imbalances in access to resources for livestock production. ‘Institutional, social and economic gender-based constraints inhibit women’s full participation in livestock markets and marketing,’ says Jemimah Njuki, a scientist with ILRI.

Research shows that many African women already have access to very local markets and that they already participate in different stages of livestock value chains. ‘Helping women access market-related information will help them help raise the continent’s livestock production levels,’ Njuki said, adding, ‘and should allow them to benefit more from their livestock enterprises.’

Watch a short video interview with Carlos Seré: http://www.youtube.com/watch?v=FIFiQJp-WaY

View presentations from the conference: http://www.slideshare.net/tag/esap

UN highlights project helping Asian countries to conserve their native livestock and wild relatives

Farmer Ma Thi Puong feeds her pigs on her  farm near the northern town of Meo Vac.

The Farm Animal Genetic Resources Project is encouraging wider use of native Asian chicken, goat and pig breeds to help sustain the livelihoods of poor farmers (photo credit: ILRI) 

A Farm Animal Genetic Resources Project conducted by the International Livestock Research Institute (ILRI) and other partners to conserve indigenous livestock breeds in Bangladesh, Pakistan, Sri Lanka and Vietnam has been recognized by the United Nations Environment Programme (UNEP) as one of eleven global projects ‘assisting farmers in developing diversified and resilient agricultural systems to ensure communities and consumers have more predictable supplies of nutritious food.’

The ILRI project is featured in an UNEP booklet launched on Tuesday 19 October 2010 during the tenth meeting of the Conference of the Parties to the Convention on Biological Diversity, taking place in Nagoya, Japan.

Securing sustainability through conservation and use of agricultural biodiversity: The UNEP-GEF contribution provides lessons from projects about useful tools for conserving and managing agricultural biodiversity over the long term. The report features project partnerships among UNEP, the Global Environment Facility (GEF) and national and international organizations conducted over the last 10 years.

The ILRI-led and GEF-funded US$6.4-million Farm Animal Genetic Resources Project was started in 2009 to better conserve local breeds of chickens, goats and pigs that help sustain the livelihoods of poor farmers and the health and well-being of women and children in Asia.

As much as 10 per cent of the world’s livestock breeds have disappeared in the last six years, due mostly to substitution or cross-breeding of local indigenous animals with exotic commercial breeds. Most of the extant indigenous livestock breeds today are found in pastoral herds and on small farms in developing countries. Understudied and insufficiently documented, many of the strengths and potential benefits of these tropical local breeds remain untapped.

The Farm Animal Genetic Resource Project works to encourage wider use of local breeds, such as the Bengal goat in Bangladesh. Each of the four countries where the project is implemented has a long history of use of indigenous livestock and a rich diversity of animals, including the wild relatives of domestic livestock, which provide additional genetic resources for breeding programs to improve domestic animals.

ILRI’s project partners include the Bangladesh Agricultural University; the Pakistan Agricultural Research Council; the University of Peradeniya, in Sri Lanka; and the Vietnamese National Institute of Animal Husbandry, with more organizations expected to join the project later. By the time the project is completed, in 2014, these partners aim to have developed breeding tools for use in low-input livestock production systems, cost-benefit analysis tools for comparing breeding programs for different indigenous breeds and populations, and analytical frameworks for assessing policy and marketing options for farm animal genetic resources.

So far, with the input of local actors, including farmers, researchers and development agents, the Farm Animal Genetic Resources Project has developed baseline survey tools for assessing animal genetic biodiversity and constraints to its conservation. These tools will also be used to assess marketing opportunities for indigenous animals and the contributions these animals make to rural livelihoods. The project has also developed a flock and herd monitoring tool that helps to measure genetic and phenotypic diversity, to track genetic changes in livestock populations over time, and to capture the relations between indigenous domesticated animals and their wild relatives.

Mohamed Ibrahim, ILRI’s coordinator of this Asia project, says that the project is increasing the capacity of local institutions to collect and analyse data related to indigenous livestock breeds. ‘Our goal,’ says Ibrahim, ‘is to ensure that important chicken, goat and pig breeds in the four targeted Asian countries are protected for the future benefit of local farmers’.

—–

Read the complete report on the following link: http://www.unep.org/dgef/Portals/43/AgBD_publication_FINAL.pdf

And find out more about the Farm Animal Genetic Resources Project on their website: http://www.fangrasia.org; and partner websites: www.fangrbd.org, www.fangrvn.org

Imported breeds threaten global livestock biodiversity

Resilient, disease-resistant, 'ancient' cattle are among the African breeds at risk of extinction as imported animals supplant valuable, but less productive, native livestock on the continent.

Urgent action is needed to stop the rapid and alarming loss of genetic diversity of livestock not only in Africa but also throughout the developing world, where a treasure-trove of drought- and disease-resistant animals still exists, according to a presentation made today at a key event in the Australasian region held to mark the UN International Year of Biodiversity.
 
Drs Okeyo Mwai and Gabrielle Persley, from the International Livestock Research Institute (ILRI), in Kenya, warned that investments are needed now to expand efforts to identify and preserve the unique traits of Africa’s rich array of livestock developed over several millennia but now under siege. In a joint paper, they said the loss of livestock diversity in Africa is part of a global 'livestock meltdown'. 
 
Drs Mwai and Persley joined other biodiversity conservation specialists and advocates at the Crawford Fund’s 2010 international conference, “Biodiversity and World Food Security: Nourishing the Planet and Its People,” being held in Parliament House, Canberra, over 30 August to 1 September.
 
“In the industrialized world”, said Dr Mwai, a leader of ILRI's breeding projects, “just six tightly defined breeds already account for 90 percent of all cattle. A 2007 report by the UN Food and Agriculture Organization (FAO) showed that over-reliance on a small number of livestock breeds is resulting in the loss of around one breed every month. FAO also report that some 20 percent of the world's 7616 livestock breeds are now viewed as at risk.”
 
He also noted that in Vietnam, the proportion of indigenous sows dropped from 72 percent in 1994 to just 26 percent 8 years later. In some countries, chicken populations have changed practically overnight from genetic mixtures of backyard fowl to selected uniform stocks raised under intensive conditions.
 
“From Africa to Asia, farmers are increasingly choosing the breeds that will produce more milk, meat and eggs to feed their hungry families and raise their incomes. But we cannot afford to lose altogether breeds that possess genetic attributes that may be critical for coping with increasing threats such as climate change and emerging pests and diseases,” he said.
 
Dr Mwai described a variety of pressures threatening the long-term viability of livestock production in Africa and globally, including rangeland degradation and cross-breeding hardy native stock with “exotic” breeds imported from Europe, Asia and the America.
 
“We need to link local, national and international resources and conserve livestock genetic diversity through dedicated livestock genebanks”, he said. “International livestock genebanks should store frozen cells, semen and DNA of endangered livestock from across the world. It is these genes that will help us feed humanity and cope with unforeseen crises.”
 
Australian Dr Gabrielle Persley warned that Australian livestock producers are likely to lose many benefits in improved production and disease resistance if Africa’s indigenous genetic resources are lost.She explained that livestock genebank collections must be accompanied by comprehensive descriptions of the animals, the populations from which they were obtained, and the environments and local practices under which they were raised.
 
“The necessary technology is already available,” Dr Persley said. “Cryopreservation has been used for years to aid both human and animal reproduction. What’s lacking is a strong policy framework for widespread use of the available technologies to preserve livestock genetic diversity.”
 
She stressed that documenting and conserving the diversity of the world’s remaining cattle, goat, sheep, swine and poultry populations is at least as essential as the maintenance of crop diversity for ensuring future food supplies in the face of health and environmental threats.
 
“Just as we should know which crop varieties are most tolerant to flooding or disease,” she said, “we should know which types of chicken can survive avian flu.”
 
But while crop genes are being stored in thousands of collections across the world and a fail-safe genebank is buried in the Arctic permafrost, she argued, “no comparable effort exists to conserve livestock genes”.
 
Other speakers at this year’s Crawford Fund annual event include:
  • Dr Cristián Samper, Director of the world’s largest and most visited natural history collection, the National Museum of Natural History, Smithsonian Institution; 
  • Professor Steve Hopper, an internationally recognised Australian plant conservation biologist who is Director of the Royal Botanic Gardens, Kew, arguably the planet’s most famous garden; 
  • Dr Emile Frison, Director General, Bioversity International, the largest international research organisation dedicated to the conservation and use of agricultural biodiversity;
  • Professor Hugh Possingham, member of the Wentworth Group of Concerned Scientists and Director of the Ecology Centre at the University of Queensland
  • Dr Megan Clark, Chief Executive, CSIRO.
 
Speakers from Australia, Asia and Africa will also be addressing biodiversity issues in relation to the fields of fisheries, forestry, microbials, biosecurity, genetically  modified organisms and human health.

Need for delivery networks for East Coast fever vaccine highlighted in audio interview

ITM Vaccine

East Coast fever is a major livestock disease in eastern, central and southern Africa. Transmitted by ticks infected with a protozoan parasite (Theileria  parva), it kills over 1 million animals each year, damaging livelihoods of poor livestock keepers and farmers in 11 countries. Researchers from organizations such as the International Livestock Research Institute (ILRI) are working to find innovative ways to protect African livestock against this and other ‘orphan’ livestock diseases.

One of the successes in the efforts to fight East Coast fever has been the development of a ‘live’ vaccine, which includes the whole parasite, weakened so as not to cause severe disease thatcame after over 30 years of research by organizations including ILRI and the Kenya Agricultural Research Institute. This long-term research was funded by UK Department for International Development and other donors of the Consultative Group on International Agricultural Research. The vaccine is now registered in Kenya, Malawi and Tanzania and its widespread use is being promoted so that it can give protection to the animals on which many poor people in these countries depend.

In the following audio interview, John McDermott, Deputy Director General-Research at ILRI, speaks in Nairobi of the need ‘to develop networks that can distribute and deliver’ the vaccine to those who need it, which should encourage its widespread use. This interview, produced in July 2010 by AFGAX Radio (http://www.agfax.net), also shares the expectations of a veterinarian from Kenya and a farmer from Tanzania of how the vaccine will help livestock keepers.

To listen to the interview, visit: http://www.agfax.net/radio/detail.php?i=353

More information about the East Coast fever live vaccine is available in the following article.

Scientists argue the importance of Africa’s diverse livestock — and the need for genebanks to conserve them

Steve Kemp, a geneticist at the Nairobi laboratories of the International Livestock Research Institute (ILRI) for both ILRI and the University of Liverpool, argues in this short video (2:24 minutes) the new opportunities — as well as urgent need — for exploring the remarkably rich livestock diversity that evolved and still exists on the highly diverse African continent.

‘We need to study the genetics of the animals,’ he says, as well as ‘the farming systems in which they are being used and their production characteristics. And that has never been done systematically in situ across this extraordinary diversity of African livestock.’ Kemp describes fast-improving technologies in the ‘new genetics’ — technologies that are allowing scientists, for the first time, to attempt these very broad kinds of genetic analyses. And he makes a case for establishing livestock genebanks to help preserve the continent’s livestock diversity, which is rapidly being lost. ‘Unless you move relatively quickly,’ warns Kemp, ‘there’ll be nothing left to study.’ Kemp makes these points in an article published in a June 2010 issue of the international journal Science. The co-authors of the article are Tadelle Dessie, an ILRI livestock breeding specialist based at ILRI’s campus in Addis Ababa, Ethiopia, and Olivier Hanotte, a geneticist that formerly worked at ILRI and now directs a Frozen Ark initiative at the University of Nottingham, in the UK. Although genebanks are an important ‘stop-gap’ for preserving livestock diversity, says Kemp, his article makes the point that ‘at the same time that you bank, you must understand the characteristics of what you’re preserving.' 'ILRI is well positioned to catalyze this kind of research,’ Kemp says. ‘It has strong links with Africa and with African partners, who have access to the livestock. It has the mix of skills it needs to understand the function of livestock, right across the spectrum from disease resistance to their role in the marketplace. And it also has the technology — the molecular tools and the informatics tools — to allow us to begin this process.’ ‘But ILRI cannot perform any of this analysis alone,’ warns Kemp. ‘It needs to network with partners in the West and across Africa.’

Science: 'Time to tap Africa's livestock genomes', 25 Jun 2010

BBC News: 'African livestock offers untapped genetic resource', 24 Jun 2010

Les experts avertissent que la disparition rapide du bétail indigène de l’Afrique menace l’approvisionnement alimentaire du continent

N'DamaHerd_WestAfrica

D’ « anciennes » espèces bovines d’Afrique de l’Ouest, résistantes aux maladies, figurent parmi les races qui risquent de disparaître parce que le bétail importé est en train de supplanter un précieux cheptel indigène.

Une action urgente est indispensable pour arrêter la perte rapide et alarmante de la diversité génétique du bétail africain qui apporte nourriture et revenus à 70 % des Africains ruraux et constitue un véritable trésor d’animaux résistants à la sécheresse et aux maladies. C’est ce que dit une analyse présentée aujourd’hui à une importante réunion de scientifiques africains et d’experts du développement.

Les experts de l’Institut international de recherche sur l’élevage (ILRI) ont expliqué aux chercheurs réunis pour la cinquième Semaine africaine des sciences agricoles (www.faraweek.org), accueillie par le Forum pour la recherche agricole en Afrique (FARA), que des investissements sont indispensables aujourd’hui même pour intensifier, en particulier en Afrique de l’Ouest, les efforts d’identification et de préservation des caractères uniques de la riche variété de bétail bovin, ovin, caprin, et porcin, qui s’est développée au long de plusieurs millénaires sur le continent et qui est aujourd’hui menacée. Ces experts expliquent que la perte de la diversité du bétail en Afrique fait partie de « l’effondrement » mondiale du cheptel. Selon l’Organisation des Nations Unies pour l’alimentation et l’agriculture, près de 20 % des 7 616 races de bétail existant dans le monde sont aujourd’hui considérées comme à risque.

« L’élevage africain est un des plus robustes au monde, et pourtant nous assistons aujourd’hui à une dilution, si pas une perte totale, de la diversité génétique de nombreuses races, » dit Abdou Fall, chef du projet diversité animale de l’ILRI pour l’Afrique de l’Ouest. « Mais aujourd’hui, nous avons les outils nécessaires pour identifier les caractéres de grande valeur du bétail africain indigène, une information qui peut être cruciale pour maintenir, voire augmenter la productivité de l’exploitation agricole africaine. »

M. Fall décrit les différentes menaces qui pèsent sur la viabilité à long terme de la production de bétail en Afrique. Ces menaces comprennent une dégradation du paysage et le croissement avec des races « exotiques » importées d’Europe, d’Asie et d’Amérique.

Par exemple, on assiste à un croisement sur une très large échelle de races des zones sahéliennes d’Afrique de l’Ouest et susceptibles aux maladies avec des races adaptées aux régions subhumides, comme le sud du Mali, et qui ont une résistance naturelle à la trypanosomiase.

La trypanosomiase tue entre trois et sept millions de tètes de bétail chaque année et son coût pour les exploitants agricoles se chiffre en milliards de dollars, lorsqu’on prend en compte, par exemple, les pertes de production de lait et de viande, et les coûts de médicaments et prophylactiques nécessaires au traitement ou à la prévention des maladies. Bien que le croisement puisse offrir des avantages à court terme, comme une amélioration de la production de viande et de lait ou une plus grande puissance de trait, il peut également faire disparaître des caractères très précieux qui sont le résultat de milliers d’années de sélection naturelle.

Les experts de l’ILRI déploient à l’heure actuelle des efforts importants en faveur d’une campagne visant à maîtriser le développement d’une résistance aux médicaments chez les parasites qui provoquent la trypanosomiase. Mais ils reconnaissent aussi que des races dotées d’une résistance naturelle à cette maladie offre une meilleure solution à long terme.

Ces races comprennent les bovins sans bosse et à courtes cornes de l’Afrique de l’Ouest et du Centre, qui ont vécu dans cette région avec ces parasites pendant des millions d’années et ont ainsi acquis une résistance naturelle à de nombreuses maladies, y compris la trypanosomiase, propagée par la mouche tsétsé, et les maladies transmises par les tiques. De plus, ces animaux robustes sont capables de résister à des climats rudes. Mais les races à courtes cornes et à longues cornes ont un désavantage : elles ne sont pas aussi productives que les races européennes. Malgré ce désavantage, la disparition de ces races aurait des conséquences graves pour la productivité future du bétail africain.

« Nous avons observé que les races indigènes sans bosse et à courtes cornes d’Afrique de l’Ouest et du Centre font l’objet d’un abatage aveugle et d’un manque d’attention aux bonne pratique d’élevage, et risquent ainsi de disparaître,» explique Fall. « Il faut qu’au minimum nous préservions ces races soit dans le contexte de l’exploitation, soit dans des banques de gènes : leurs caractéristiques génétiques pourraient en effet s’avérer décisives dans la lutte contre le trypanosomiase, et leur robustesse pourrait être un atout essentiel pour des exploitants agricoles qui auront à s’adapter au changement climatique. »

Le Kuri aux grandes cornes bulbeuses du Sud Tchad et du Nord-est du Nigéria fait partie des bovins africains à risques. Non seulement il ne se laisse pas déranger par les piqûres d’insecte mais il est également un excellent nageur, vu qu’il s’est développé dans la région du lac Tchad, et est idéalement adapté aux conditions humides dans des climats très chauds.

Les actions de l’ILRI en faveur de la préservation du bétail africain indigène s’inscrivent dans un effort plus large visant à améliorer la productivité de l’exploitation agricole africaine au travers de ce qu’on appelle la « génomique du paysage ». Cette dernière implique entre autre chose, le séquençage des génomes de différentes variétés de bétail provenant de plusieurs régions, et la recherche des signatures génétiques associées à leur adaptation à un environnement particulier.

Les experts de l’ILRI considèrent la génomique du paysage comme étant particulièrement importante vu l’accélération du changement climatique qui impose à l’éleveur de répondre toujours plus rapidement et avec l’expertise voulue à l’évolution des conditions de terrain. Mais ils soulignent qu’en Afrique en particulier, la capacité des éleveurs à s’adapter aux nouveaux climats va dépendre directement de la richesse du continent en termes de diversité de son cheptel indigène.

« Nous assistons trop souvent à des efforts qui visent à améliorer la productivité du bétail dans la ferme africaine en supplantant le cheptel indigène par des animaux importés qui à long terme s’avéreront mal adaptés aux conditions locales et vont demander un niveau d’attention simplement trop onéreux pour la plus part des petits exploitants agricoles, » dit Carlos Seré, Directeur général de l’ILRI. « Les communautés d’éleveurs marginalisées ont avant tout besoin d’investissement en génétique et en génomique qui leur permettront d’accroitre la productivité de leur cheptel africain, car ce dernier reste le mieux adapté à leurs environnements. »

M. Seré souligne la nécessité de nouvelles politiques qui encouragent les éleveurs et les petits exploitants agricoles africains à conserver les races locales plutôt que de les remplacer des animaux importés. Ces politiques, dit-il, devraient comprendre des programmes d’élevage centrés sur la l’amélioration de la productivité du cheptel indigène comme alternative à l’importation d’animaux.

Steve Kemp, qui dirige l’équipe de génétique et de génomique de l’ILRI, ajoute que les mesures de conservation en exploitation doivent également s’accompagner d’investissements en faveur de la préservation de la diversité qui permettront de geler le sperme et les embryons. On ne peut en effet exiger du seul exploitant agricole qu’il renonce à une augmentation de la productivité au nom de la conservation de la diversité.

« Nous ne pouvons pas attendre de l’exploitant qu’il sacrifie son revenu avec pour seul objectif de préserver le potentiel de diversité, » explique M. Kemp. « Nous savons que la diversité est essentielle pour relever les défis auxquels l’exploitant africain est confronté, mais les caractéres de grande valeur qui seront importants pour l’avenir ne sont pas toujours évidents dans l’immédiat. »

M. Kemp recommande une nouvelle approche pour mesurer les ressources génétiques du cheptel. Aujourd’hui, dit-il, l’estimation de ces caractéristiques porte essentiellement sur des éléments tels que la valeur de la viande, du lait, des œufs et de la laine, mais elle ne prend pas en compte d’autres attributs qui pourraient avoir une importance égale, voire supérieure, pour l’éleveur, qu’il soit en Afrique ou dans une autre région en développement. Ces attributs comprennent la capacité d’un animal à tirer la charrue, à fournir de l’engrais, à faire office de banque ou compte d’épargne ambulant, et d’être une forme efficace d’assurance contre les pertes de récolte.

Mais l’association de ces multiples attributs avec l’ADN d’un animal exige de nouveaux moyens pour rechercher et comprendre les caractéristiques du cheptel dans une région caractérisée par une grande diversité et une grande variété d’environnements.

« On dispose aujourd’hui des outils nécessaires, mais nous avons besoin de la volonté, de l’imagination et des ressources avant qu’il ne soit trop tard, » indique M. Kemp.