Study finds Vietnam has low awareness of leptospirosis, a bacterial disease commonly transmitted between animals and people

A smallholders pig in Chưng Mỹ, Vietnam

A three-year study by ILRI and partners shows that farmers in Vietnam have low awareness of leptospirosis, a bacterial disease that infects animals (including pigs) and humans (photo credit: ILRI/Andrew Nguyen).

A joint research team consisting of staff from the Vietnamese Department of Animal Health, the Pasteur Institute in Ho Chi Minh City, Nong Lam University and the International Livestock Research Institute (ILRI) recently completed a three-year study of leptospirosis, a bacterial disease passed from animals to humans. The aim of the study was to identify behaviours and conditions in Vietnam that increase the risk of humans and animals contracting this disease.

Results from Tien Giang and Binh Phuoc provinces, where the study was conducted, indicate farmers and small-scale slaughterhouse workers have low awareness of leptospirosis, even though researchers found that the disease was common in the pigs and humans tested.

The study, the findings of which were presented at a workshop in August 2013, was part of a larger project called ‘Ecosystem approaches to the better management of zoonotic emerging infectious diseases in Southeast Asia’, or EcoZD for short, which is coordinated by ILRI and funded by the International Development Research Centre, of Canada.

The EcoZD project used an ‘ecohealth’ approach, which requires bringing scientists from different disciplines and partner organizations to work together on complex health problems. Applying an ‘ecohealth’ framework improves understanding of the web of social, economic and ecological dimensions of infectious diseases and the importance of engaging local actors in preventing and controlling them.

‘Leptospirosis is a disease that has been around for a long time, but it often gets ignored as attention and resources are focused on emerging diseases like avian influenza’, said Mai Van Hiep, the deputy director general of the Department of Animal Health in Vietnam.

Leptospirosis affects animals and humans worldwide. The most common way humans get the disease is through direct exposure to urine from infected animals or from contact with water contaminated with such urine. People living in areas with open sewers, or that regularly flood, or that have poor hygiene are at particular risk. People who work or live with animals are at even greater risk. Animals that commonly acquire and spread leptospirosis include rodents, dogs and livestock.

Leptospirosis stunts the growth of pigs and causes them to abort, leading to economic losses for pig owners and the pork industry as a whole. People who develop the disease also suffer economic losses due to decreased productivity or missed work and the costs of seeking medical treatment.

‘We started by looking at public health records dating back to 2008 but there were no records telling us how common leptospirosis has been in Vietnam, in animals or humans’, said Hiep. ‘We knew that if animal and human health researchers worked side by side to better understand this disease, we would collect relevant data.’

The research team tested more than 360 people and 880 pigs in Tien Giang and Binh Phuoc. In Tien Giang, 29% of pigs and 10% of humans in the sample tested positive for leptospirosis. In Binh Phuoc, 22% of pigs and 20% of humans in the sample tested positive. (A positive test indicated the person or animal had past contact with the causative pathogen.)

Discussions with community members in both provinces revealed that people were unfamiliar with the symptoms of leptospirosis, how it could harm them and their animals and ways they could prevent it.

As yet, no mechanism in Vietnam links disease reporting between animal and human health. This missing link makes it hard for researchers in both sectors to understand how changes in the environment or behaviour may affect leptospirosis and other zoonotic diseases, which are passed between animals and humans.

‘Identification of serovars and serogroups provides us with clues as to which types of animals are transmitting leptospirosis. This information can help authorities to design strategies to control the spread of the disease to humans’, said Cao Thi Bao Van, deputy director of the Pasteur Institute in Ho Chi Minh City.

‘Some simple things reduce the risk of exposure’, said Van. ‘People working with animals should wear protective clothing, like gloves and boots, when cleaning animals and their pens with help from services like System4 Fort Worth, TX; this reduces the chance of bacteria entering the body through cuts or scratches. The risk of leptospirosis spreading among animals can be reduced by separating them in several pens rather than keeping them altogether in large groups.’

Lucy Lapar, an ILRI agricultural economist based in Hanoi, said research should now be conducted on the economic burden of leptospirosis in Vietnam, which remains largely unknown. ‘We need estimates of the economic burden in terms of harm both to human health and to livestock production so that decision-makers can better prioritize their resources for disease control’, said Lapar. ‘As long as the true burden of leptospirosis remains unknown in Vietnam, we will not know if the country should direct more resources to controlling it.’

For more information about EcoZD, visit www.ilri.org/ecozd

More information about the project is available on the EzoZD wiki.

Animal-to-human diseases: From panic to planning–new recommendations for policymakers

Greatest Burden of Zoonoses Falls on One Billion Poor Livestock Keepers

Map by ILRI, published in an ILRI report to the UK Department for International Development (DFID): Mapping of Poverty and Likely Zoonoses Hotspots, 2012.

The UK’s Institute for Development Studies (IDS) has published a 4-page Rapid Response Briefing titled ’Zoonoses: From panic to planning’.

Veterinary epidemiologist Delia Grace, who is based at the International Livestock Research Institute (ILRI), along with other members of a Dynamic Drivers of Disease in Africa Consortium, based at the STEPS Centre at IDS, c0-authored the document.

The briefing recommends that policymakers take a ‘One-Health’ approach to managing zoonotic diseases.

‘Over two thirds of all human infectious diseases have their origins in animals. The rate at which these zoonotic diseases have appeared in people has increased over the past 40 years, with at least 43 newly identified outbreaks since 2004. In 2012, outbreaks included Ebola in Uganda . . . , yellow fever in the Democratic Republic of Congo and Rift Valley fever (RVF) in Mauritania.

‘Zoonotic diseases have a huge impact – and a disproportionate one on the poorest people in the poorest countries. In low-income countries, 20% of human sickness and death is due to zoonoses. Poor people suffer further when development implications are not factored into disease planning and response strategies.

‘A new, integrated “One Health” approach to zoonoses that moves away from top-down disease-focused intervention is urgently needed. With this, we can put people first by factoring development implications into disease preparation and response strategies – and so move from panic to planning.

Read the Rapid Response Briefing: Zoonoses: From panic to planning, published Jan 2013 by the Dynamic Drivers of Disease in Africa Consortium and funded by the UK Department for International Development (DFID).

About the Dynamic Drivers of Disease in Africa
The Dynamic Drivers of Disease in Africa is a consortium of 30 researchers from 19 institutions in Africa, Europe and America. It conducts a major program to advance understanding of the connections between disease and environment in Africa. Its focus is animal-to-human disease transmission and its objective is to help move people out of poverty and promote social justice.

Over the past few decades, more than 60 per cent of emerging infectious diseases affecting humans have had their origin in wildlife or livestock. As well as presenting a threat of global disease outbreak, these zoonotic diseases are quietly devastating lives and livelihoods. At present, zoonoses are poorly understood and under-measured — and therefore under-prioritized in national and international health systems. There is great need for evidence and knowledge to inform effective, integrated One Health approaches to disease control. This Consortium is working to provide this evidence and knowledge.

Natural and social scientists in the Consortium are working to provide this evidence and knowledge for four zoonotic diseases, each affected in different ways by ecosystem changes and having different impacts on people’s health, wellbeing and livelihoods:

  • Henipavirus infection in Ghana
  • Rift Valley fever in Kenya
  • Lassa fever in Sierra Leone
  • Trypanosomiasis in Zambia and Zimbabwe

Of the 30 scientists working in the consortium, 4 are from ILRI: In addition to Delia Grace, these include Bernard Bett, a Kenyan veterinary epidemiologist with research interests in the transmission patterns of infectious diseases as well as the technical effectiveness of disease control measures; Steve Kemp, a British molecular geneticist particularly interested in the mechanisms of innate resistance to disease in livestock and mouse models, and Tom Randolph, an American agricultural economist whose research interests have included animal and human health issues and assessments of the impacts of disease control programs.

Delia Grace leads a program on Prevention and Control of Agriculture-associated Diseases, which is one of four components of a CGIAR Research Program on Agriculture for Nutrition and Health. Tom Randolph directs the CGIAR Research Program on Livestock and Fish. Steve Kemp is acting director of ILRI’s Biotechnology Theme.

 

 

Cattle pneumonia pathogen arose with domestication of ruminants ten thousand years ago, researchers say

In this short (3:45 min) video interview, Joerg Jores, a molecular biologist at the International Livestock Research Institute (ILRI), shares new insights from his research on contagious bovine pleuropneumonia, a killer livestock disease endemic in Africa.

Jores describes a recent study by researchers from ILRI, the International Centre of Insect Physiology and Ecology and partners in Germany, Sweden, Switzerland and the USA that evaluated the history and relationships of pathogens that cause both cattle (contagious bovine pleuropneumonia) and goat (contagious caprine pleuropneumonia) pneumonia.

The study, ‘The origin of the “Mycoplasma mycoides cluster” coincides with domestication of ruminants,’ was published in the April 2012 edition of the Public Library of Science (PLoS, 27 Apr 2012). The researchers found that the bacterium Mycoplasma mycoides, which causes contagious bovine pleuropneumonia, arose at the same time as humans first started to domesticate wild ruminants.

The onset of domestication of livestock about 10,000 years ago, which established large ruminant populations and the herding of mixed species, is thought to have contributed to creating the conditions favouring the spread and diversification of the pathogens by allowing them to adapt to different hosts.

Contagious bovine pleuropneumonia can kill up to 80 per cent of animals in infected herds, and the surviving animals often carry the disease for long periods and can introduce it to uninfected herds.

‘This research was the largest comparative study of Mycoplasma mycoides cluster to date,’ says Jores. ‘Our findings are shedding light into the history of contagious bovine pleuropneumonia and this new knowledge is expected to guide future research into the disease.’

Read a related ILRI clippings article on the paper: Lethal family tree: ILRI research shows livestock bacterium is as old as the livestock it kills.

Download the paper: The origin of the Mycoplasma mycoides cluster coincides with domestication of ruminants, by Anne Fischer (ICIPE and ILRI), Beth Shapiro (Pennsylvania State University), Cecilia Muriuki (ILRI), Martin Heller (Friedrich-Loeffler-Institute), Christiane Schnee (Friedrich-Loeffler-Institute), Erik Bongcam-Rudloff (Swedish University of Agricultural Sciences), Joachim Frey (University of Bern) and Joerg Jores (ILRI), 2012, PLoS ONE 7(4): e36150.

 

Researchers strengthen their partnerships in the fight against Rift Valley fever

Typical mixed crop-livestock farming of western Kenya

A mixed crop-livestock farm in Western Kenya. Livestock researchers are working towards joint efforts of preventing and controlling Rift Valley fever in eastern Africa (photo credit: ILRI/Charlie Pye-Smith).

A new effort to align the work of partners in eastern Africa and implement more synergetic research on Rift Valley fever was the focus of a recent multi-stakeholder workshop that reviewed research strategies and approaches used by veterinarians, epidemiologists, economists and public health experts in projects across Kenya.

The meeting, which was held at the International Livestock Research Institute (ILRI) on 2 February 2012, discussed ILRI’s Rift Valley fever research program, potential collaborations with partners and options of controlling the mosquito-borne viral disease that affects cattle herds in eastern and southern Africa. Epidemics of the disease, which can also infect humans, emerge after above-average and widespread rainfall and lead to death and abortion in livestock.

Participating organizations, which are conducting research on Rift Valley fever, included Kenya’s ministries in charge of livestock development and public health, the universities of Nairobi and Egerton, Kenya Agricultural Research Institute and Kenya Medical Research Institute. Also attending the workshop were staff of the African Union Interafrican Bureau for Animal Resources (AU-IBAR), Swiss Tropical and Public Health Institute, the Nairobi office of the US Centres for Disease Control and Food and Agriculture Organization of the United Nations (FAO).

‘Our research in Rift Valley fever is benefitting from increasing collaboration,’ said Bernard Bett, an epidemiologist with ILRI. ‘These “joined up” efforts, are supporting joint assessments of the prevalence of zoonotic diseases in both animals and humans and are helping to increase the relevance of the research leading to more effective interventions.’

This strategy should lead to lower costs of doing research and implementing human and animal health interventions and a reduced burden of Rift Valley fever on the region’s livestock, people, wildlife and markets.

Esther Schelling, a epidemiologist with the Swiss Tropical and Public Health Institute, and formerly a researcher with ILRI, said: ‘Collaborative efforts in addressing the challenge of Rift Valley fever can support “one health” initiatives that seek to raise the research profile of neglected zoonotic diseases in Africa and improve the effectiveness of interventions through joint surveillance, preparedness and contingency planning to reduce the amount of time it takes to control outbreaks of these diseases.’

During the meeting, ILRI shared findings from a collaborative project known as ‘Enhancing prevention and control of Rift Valley fever in East Africa by inter-sectorial assessment of control options.’ For example, an analysis, by the project, of the public health burden of Rift Valley fever outbreaks measured in disability adjusted live years (DALYs) – the first of its kind in Kenya – shows that the 2006 and 2007 outbreak resulted in 3.4 DALYs per 1000 people and household costs of about Ksh 10,000 (USD120) for every human case reported. In 2008, ILRI estimated the disease cost the Kenyan economy USD30 million. Findings from the project also included a dynamic herd model developed for pastoral systems for simulating herd dynamics during normal and drought periods and in Rift Valley fever outbreaks. This model will be used to simulate the impacts of prevention and control options for the disease.

The Nairobi meeting discussed gaps in current research practice including the absence of climate models, sampling tools and methods to support decision support tools. Participants highlighted the need for a vector profile of the disease to enable mapping of most affected and high-risk areas and the need to understand how Rift Valley fever interacts between livestock and wildlife.

The prevention and control options discussed at the meeting will be further simulated using the herd dynamic model, which will be followed by an economic analysis using a process that was agreed on in an earlier (September 2011) workshop that discussed Rift Valley fever surveillance. A cost-benefit analysis of vaccination, vector control, surveillance, and sanitary measures is now scheduled. Results from the analysis will give much-needed evidence to support creation of policies and strategies for appropriate surveillance, prevention and control of Rift Valley fever in eastern Africa.

According to Tabitha Kimani, an agricultural economist with ILRI, ‘preliminary cost benefit analysis is already showing that it is beneficial to control Rift Valley fever through vaccination.’

 

Read more on Rift Valley fever research at ILRI and the region:

ILRI news archive

https://newsarchive.ilri.org/index.php?s=%22Rift+Valley+fever%22&submit=Search

ILRI clippings archive

http://ilriclippings.wordpress.com/2012/02/12/could-rift-valley-fever-be-a-weapon-of-mass-destruction-an-insidious-insect-animal-people-infection-loop-explored/

 

 

 

Market incentives–not top-down regulation–needed to help poor farmers take advantage of East Africa’s burgeoning pig industry

Uganda railways assessment 2010

A family of pigs are at home on a section of overgrown railway track near Kumi, Uganda, September 2010 (photo on Flickr by John Hanson/US Army).

Editor’s Correction of 18 Jan 2012
Today we have corrected parts of this story to reflect the following comment from CRP 3.7 director Tom Randolph:

Lessons learned in other smallholder livestock systems—especially smallholder dairying in East Africa and India—is that a typical policy reaction to animal and public health challenges is to seek more regulation. The problem is that such regulation often proves to be toothless (i.e. cannot be effectively enforced by veterinary services) and ultimately anti-poor. We are pursuing alternative approaches that encourage farmers and other value chain actors to improve animal and public health-related practices by creating or exploiting market incentives rather than relying on top-down regulation. This will certainly be our approach as we engage in the Uganda smallholder pig value chain.’ — Tom Randolph, director of CGIAR Research Program on Livestock and Fish (CRP 3.7)

East Africa’s growing human population and rapid urbanization are creating new opportunities for small-scale farmers to make money from pig farming. According to Tom Randolph, an agricultural economist with the International Livestock Research Institute (ILRI), ‘pig production [in East Africa] is taking off and growing rapidly and there is a rising demand for pork and related products, particularly in Uganda.’ Uganda has more than 3 million pigs and over 1.1 million people across the country (17 per cent of households) are involved in pig rearing and trade in pork products.

Randolph was speaking at the ILRI Nairobi campus during a recent workshop to find ways of diagnosing and controlling the spread of cysticercosis, a disease caused by tapeworms that can cause seizures and epilepsy in people when they consume undercooked pork infected with the tapeworms. Inadequate disease control is one of the biggest challenges facing the informal pig industry in East Africa.

Most of the pork sold in this region is produced by small-scale farmers who keep 1 to 3 animals in ‘backyard systems’, and the rapid growth of urban areas is opening up new opportunities for small-scale producers to intensify their pork production to meet growing demand.

For farmers in the region, pigs are ‘a cash crop of livestock’ because they do not carry cultural and social values like cows and chickens. This means that pig farming, because of its nature as a commercial activity and the shorter production cycles of pigs, can offer significant economic benefits to smallholders. ‘By supporting pig farming, we will be helping women, who are the ones who typically tend to the pigs on these small farms, and families to improve their income and their nutrition,’ said Randolph.

Despite the great potential offered by poor farmers from pig farming, Randolph said ‘the sector remains largely “invisible” and poorly regulated because the region’s governments have not focused on developing it.’

Improvements needed in the sector include providing better breeds and improving marketing systems to capture the ‘value that is currently being leaked out of the system’. Dealing with diseases such as African swine fever and cysticercosis is also critical. ‘Early diagnosis of diseases,’ said Randolph, ‘will give confidence to consumers that the pork they buy is safe.’

See workshop presentation:

Amid soaring meat costs, officials from East Africa and Middle East seek plan to keep animal diseases from disrupting livestock trade

Orma Boran cattle crossing a river in Kenya

New approach to Rift Valley fever outbreaks aims to ensure food safety as region boosts livestock imports from Africa (photo credit: ILRI/Dolan)

With increased trade in livestock products offering a possible antidote to high food prices, livestock experts from the Middle East and 12 African countries are meeting this week (13-16 June, 2011) in Dubai to develop a strategy that eliminates the need to impose devastating bans on livestock imports from the Horn of Africa, as prevention against the spread of Rift Valley fever. The strategy should expedite the flow of livestock products while increasing safety of the overall livestock trade in the region.

Convened by the African Union’s Interafrican Bureau for Animal Resources (AU-IBAR), the International Livestock Research Institute (ILRI) and the United States Agency for International Development (USAID), the workshop will encourage officials and livestock traders to use a simple ‘Decision Support Planning Tool’ to guide and moderate their responses to Rift Valley fever outbreaks.

The ‘decision support tool’ for Rift Valley fever was developed by 30 experts and decisions-makers from across the Horn of Africa with technical assistance from researchers at ILRI, the United Nations’ Food and Agriculture Organization (FAO), and other partners. The tool will be used by chief veterinary officers and other national decision-makers. Its framework identifies the sequence of events likely to occur as the risk of a disease outbreak increases.

Rift Valley fever is a mosquito-borne virus found in eastern, western and southern Africa, Yemen and Saudi Arabia. Epidemics emerge periodically with prolonged rains. Climate and land-use changes could make outbreaks more frequent. A study done by ILRI economists Karl Rich and Francis Wanyoike indicated that the Rift Valley fever outbreak in 2007 cost Kenya at least USD32 million.

‘We must avoid unnecessary disruptions in agricultural trade between East Africa and the Middle East,’ said Ahmed El Sawalhy, director of AU-IBAR. ‘Livestock products must be safe and action concerning disease outbreaks must be in line with the actual threat.’ To this end, an animal health certification model suitable for pastoral livestock production systems and that promotes OIE standards has been developed by AU-IBAR in partnership with FAO and the Royal Veterinary College, London. The model is based on risk assessment and involves integration of both upstream animal health inspection and certification at entry points, markets and at the quarantines.

Time is also of critical importance in prevention and control of transboundary animal diseases. ‘In the last Kenyan Rift Valley fever outbreak, control measures were implemented late—not until there were definitive signs of an outbreak,’ said Jeffrey Mariner, an epidemiologist at ILRI. ‘This tool links early warning signs to control measures that can be implemented before animals or people begin falling ill. The new tool could reduce the impact of Rift Valley fever, and maybe even prevent some local outbreaks and has the potential to prevent the spread of Rift Valley fever through trade.’

‘The good news,’ says Bernard Bett, an epidemiologist at ILRI, ‘is that the impact of Rift Valley fever can be mitigated with early action during an outbreak, but veterinary officers and  decision-makers need to know what interventions to implement—and when—as the  stages of an epidemic  unfold.’

Rift Valley fever is best prevented through animal vaccination. But vaccines are expensive and few governments are willing to pay for expensive vaccines unless evidence indicates an epidemic is imminent. Regional cooperation is required to build consensus on managing the disease and to prevent trade disruptions.

Larry Meserve, USAID/EA’s regional mission director commented, ‘President Obama’s Feed the Future initiative aims to increase food security throughout Africa. To succeed, we must all help to improve the capacity of leadership in the Horn of Africa to anticipate potentially disastrous events like disease epidemics so that appropriate preventive or mitigating measures are taken before it is too late. Livestock is a vital staple crop in this part of the world, and both the private and public sectors have to do everything possible to prevent unnecessary disruptions in the trade of livestock and other commodities.’

Visit the official workshop blog site: http://rvfworkshop2011.wordpress.com

Forestalling the next plague: Building a first picture of all diseases afflicting people and animals in Africa

Typical mixed crop-livestock farming of western Kenya

An ILRI-Wellcome project is investigating the disease pathogens circulating in both people and animals in the communities outside the border town of Busia, Kenya, where smallholders mix crop growing with livestock raising (photo credit: ILRI/Pye-Smith).

A project funded by the Wellcome Trust on zoonotic diseases was broadcast last week on an Australian television program called ‘Catalyst’. The show ran on Thursday, 10 March 2011, at 20:00 Australian time. The research described in the program is supported by the International Livestock Research Institute (ILRI), where the project’s principal investigator, Eric Fevre, is hosted.

The television program interviews Fevre and his colleagues Lian Doble, a veterinarian managing laboratory work in western Kenya, and  Appolinaire Djikeng, technology manager of a Biosciences eastern and central Africa (BecA) Hub, located on ILRI’s Nairobi, Kenya, campus.

Fevre and Doble and their team are investigating what disease pathogens of both people and animals are circulating near the border town of Busia, a very poor, densely populated area whose communities mix crop growing with livestock raising on small plots of land. Research such as this that is looking at both human and animal diseases is rare but urgently needed because the close relations of people and farm animals in many poor regions, as well as the existence of monkeys and other wildlife nearby, is a ‘recipe for diseases’ jumping from animals to people. If we’re going to manage to forestall another zoonotic plague such as bird flu or HIV/AIDS, we’re going to have to conduct more of such ‘one health’ investigations that look at exactly what diseases are being transmitted between animals and people. The research project in western Kenya is part of a larger study being conducted by the BecA Hub to look at diseases of animals and people across eastern Africa. The BecA Hub team is using genomics and meta-genomics, and ‘4 million bucks of computing power,’ to build a picture of the complex relations of disease pathogens circulating in the region.

Eric Fevre and pit latrine in Busia, Kenya

Eric Fevre, who leads the ILRI-Wellcome project investigating the disease pathogens circulating in both people and animals in Busia, points out a pit latrine frequented by pigs as well as people, where disease transmission between the two species is most likely to occur (photo credit: ILRI/Pye-Smith).

A transcript of the Australian television program on this research follows.

NARRATION
Africa, the cradle of humanity and renowned for its wildlife. It could also be the origin of the next global pandemic. It’s long been known that people and animals living close together—well, that’s a recipe for disease. But exactly which diseases? And if new diseases are creeping into the system? Well, that’s something they’re trying to find out here in western Kenya. They’re called zoonotic diseases: infections that can jump from animals to people.

Eric Fevre
There are lots of zoonotic infections. In fact, about 60 per cent of all human diseases are of zoonotic origin.

NARRATION
So this team headed by Eric Fevre is taking a much closer look at the health of people and livestock in a densely populated region of western Kenya.

Eric Fevre
It seems to be obvious that zoonotic infections will occur more in people who keep livestock than in those who don’t. Whether that’s the case has never been formally established.

Lian Doble
If you look around here you don’t see the cattle in a field, in a fenced field or in a barn away from the people. Cattle are tethered within the compound that everybody’s working in, the chickens are loose around, going in and out of the houses. It’s a much more integrated system than anything we really see at home.

NARRATION
The kinds of problems that this environment creates are readily apparent.

Eric Fevre
We’re in a mixed crop-livestock production system where people are keeping a few animals. And as you can see behind me here, it’s the rainy season and people have recently planted their new crops. And this is an area of interaction between the croplands and the animals. And you can see behind over there behind those fields is some forest. And there might be a watercourse flowing through that forest, for example, where the animals are going to water. And that’s where the exciting things happen from a disease transmission point of view.

NARRATION
Part of the team focus on human health, taking a range of samples from people in the village as well as a detailed account of their medical history and current living situation. Meanwhile, others in the team have a look at the livestock.

Lian Doble
What we do know is that there are a large number of diseases that circulate between animals and humans. The problem is that a lot of these diseases cause signs which are very similar to other human diseases like malaria and human tuberculosis. What isn’t known is actually how many of the diseases that are mainly diagnosed as malaria actually are another disease caused by the pathogens found in cattle. So we’re just trying to find out what diseases she has and what are shared with the people that she lives with.

Paul Willis
And does she look healthy?

Lian Doble
She’s feisty and she’s quite healthy so we’ll see what she might have been carrying. And we can tell you later in the lab.

NARRATION
Samples are taken back to field laboratories in the town of Busia on the Ugandan border.

The ILRI-Wellcome Trust laboratory in Busia, Kenya

The ILRI-Wellcome Trust animal-human laboratory in Busia, Kenya (photo credit: ILRI/Pye-Smith).

Eric Fevre
In this place we’ve got a human and an animal lab next door where we process the material that comes in from the field. One of the things that we really need to do is look at fresh material. Because once the samples get a bit old, the parasites become a bit difficult to identify. And the second important thing is that we of course feed back to the participants of our study. So results that we get in the lab here are used directly by the clinicians working in the field to decide what treatments they should be giving people. So that’s one of the direct ways that our research project feeds back into the community.

NARRATION
This detailed look at the community health of a whole region is showing many expected results, and a few surprises.

Eric Fevre
One of the diseases that we’re testing for is brucellosis. And looking at the official reports there isn’t any brucellosis in this region. But we have detected brucellosis both in animals and in people and so already that’s what’s telling us that there are things circulating here that official records don’t pick up.

NARRATION
There seems to be a lot of malaria around, but Eric’s team are finding that many cases are masking something much more sinister.

Eric Fevre
Often it won’t be malaria. It will be something else. And there are a multitude of different pathogens that cause fever of the type that malaria also causes. And that’s a real problem. Because somebody with a low income might need to, say, sell one of their animals to then go to the clinic, get a diagnosis, buy some anti-malarial drugs. They don’t work because the person actually has sleeping sickness. So they go back to a different clinic. Or to a traditional healer. They get drugs that don’t work for the infection that they have. And so on and so on, five, six, seven times, travelling maybe ten kilometres each time. That’s a huge economic burden on them. And then finally they get properly diagnosed when they’re in the late stage of their infection. And it would have been much easier to treat them if they’d have been caught earlier on.

NARRATION
It’s a very complex picture that is emerging, one that could be simplified by some basic technology.

Lian Doble
Thirty per cent of our participants don’t have access to a latrine. You can imagine what that means. And that’s something that could be very actually quite easily sorted out with some education and some money and would sort out all sorts of other diarrhoeal diseases, which are one of the huge killers of young children in Africa.

Biosciences eastern and central Africa hub platform

One of the ultra-modern laboratories at the Biosciences eastern and central Africa (BecA) Hub ‘platform’ hosted and managed by ILRI in Nairobi, Kenya (photo credit: ILRI/White).

NARRATION
Back in Nairobi another team is taking a different look at the spread of diseases across east Africa.

NARRATION
Appolinaire Djikeng heads up a team collecting samples of animals and people from a wide swath across Kenya.

Appolinaire Djikeng
So essentially at the moment we are trying to cover the east African region. But of course we would like to once we establish our processes and data management skills and data analysis skills we like to expand this to other parts of Africa.

NARRATION
The first step in the labs is to figure out exactly what spread of diseases are present in their samples.

Appolinaire Djikeng
You are able to go in there, look at the, the complex composition of the viruses, at the pathogens or at the small organisms that exist in them in doing it that way you are able to come up with a catalogue of potential organisms that exist in there.

NARRATION
And this analysis goes deep into the DNA of the viruses and pathogens that are found, tracking minute changes in their genetic make-up that allows Appolinaire’s team to follow the spread of individual strains of a disease.

Appolinaire Djikeng
We have a reasonably good bioinformatic infrastructure here for storing that data and extracting them, looking at specific parameters from that particular data base. With so many samples from such a wide geographical area and with so much information for each individual sample these guys are dealing with a lot of data and so they brought in four million bucks worth of computing grunt. With so many samples from such a wide geographic area and with so much information for each individual sample these guys are dealing with a lot of data. So they brought in four million bucks worth of computing grunt.

NARRATION
There are several teams looking at zoonotic diseases in Kenya, but the impact of their work is global.

Appolinaire Djikeng
The threat of emerging and re-emerging infectious diseases are no longer restricted to countries like central Africa or sub-Saharan Africa So I think now we have to put this work in the context of the global effort across the world. Trying to make sure that even remote parts of the area do have resources and capabilities to begin to do good and accurate diagnostics of what could be emerging.

Eric Fevre
We actually use the data that we gather to, to try and understand how these things are being transmitted, how the fact that your animal has this disease impacts on your risk at a population scale. And, and use that to then try and understand the, the process of transmission of these diseases.

Lian Doble
The next big disease problem is very likely to be a zoonotic disease so doing this sort of work and then leaving it isn’t an option. It needs to be ongoing and, and build. This is the start of something and we’ll build on it from here.

Download this Catalyst show from Australia’s ABC website (select ‘Zoonosis’ 10/3/2011).

And check out a blog by Paul Willis about the adventures of filming in Kenya’s border town of Busia: Coming to an end, 7 March 2011.

Here’s some of what Paul Willis has to say in his blog about this film project:
‘Busia is a hard place; a border crossing town riddled with grinding poverty and hard living. The main street, the only sealed road through town, is frequently clogged with a seemingly endless string of trucks waiting to cross the border into Uganda. Because Uganda, Rwanda and Burundi are all landlocked nations, every drop of fuel and most freight coming into the country has to be trucked in from Mombasa and most of that comes through Busia. . . . This area of Kenya has some of the most intensively farmed land in East Africa. The whole landscape is divided into small plots with clusters of mud and thatch huts scattered among them. Here people live cheek-by-jowl with their crops and animals. It’s a recipe for diseases to jump from animals to people. Add strips of forested vegetation inhabited by a variety of monkeys and other native mammals and the chances of new diseases leaping into the human population goes up dramatically. We’re here to report on the work of a dedicated group trying to get a handle on exactly what diseases are in this chaotic system. It’s hard work, in one of the hotter areas of Kenya, and the study is spread over a huge area. . . .’

Livestock boom risks aggravating animal ‘plagues,’ poses growing threat to food security and health of world’s poor

Shepherd in Rajasthan, India

Research released at conference calls for thinking through the health impacts of agricultural intensification to control epidemics that are decimating herds and endangering humans (Picture credit: ILRI/Mann).

Increasing numbers of domestic livestock and more resource-intensive production methods are encouraging animal epidemics around the world, a problem that is particularly acute in developing countries, where livestock diseases present a growing threat to the food security of already vulnerable populations, according to new assessments reported today at the International Conference on Leveraging Agriculture for Improving Nutrition & Health in New Delhi, India.

‘Wealthy countries are effectively dealing with livestock diseases, but in Africa and Asia, the capacity of veterinary services to track and control outbreaks is lagging dangerously behind livestock intensification,’ said John McDermott, deputy director general for research at the International Livestock Research Institute (ILRI), which spearheaded the work. ‘This lack of capacity is particularly dangerous because many poor people in the world still rely on farm animals to feed their families, while rising demand for meat, milk and eggs among urban consumers in the developing world is fueling a rapid intensification of livestock production.’

The global conference (http://2020conference.ifpri.info), organized by the International Food Policy Research Institute, brings together leading agriculture, nutrition and health experts to assess ways to increase agriculture’s contribution to better nutrition and health for the world’s most vulnerable people.

The new assessments from ILRI spell out how livestock diseases present ‘double trouble’ in poor countries. First, livestock diseases imperil food security in the developing world (where some 700 million people keep farm animals and up to 40 percent of household income depends on them) by reducing the availability of a critical source of protein. Second, animal diseases also threaten human health directly when viruses such as the bird flu (H5N1), SARS and Nipah viruses ‘jump’ from their livestock hosts into human populations.

McDermott is a co-author with Delia Grace, a veterinary and food safety researcher at ILRI, of a chapter on livestock epidemics in a new book called ‘Handbook of Hazards and Disaster Risk Reduction.’ This chapter focuses on animal plagues that primarily affect livestock operations—as opposed to human populations—and that are particularly devastating in the developing world.

‘In the poorest regions of the world, livestock plagues that were better controlled in the past are regaining ground,’ they warn, with ‘lethal and devastating impacts’ on livestock and the farmers and traders that depend on them. These ‘population-decimating plagues’ include diseases that kill both people and their animals and destroy livelihoods.

Livestock-specific diseases include contagious bovine ‘lung plague’ of cattle, buffalo and yaks, peste des petits ruminants (an acute respiratory ailment of goats and sheep), swine fever (‘hog cholera’) and Newcastle disease (a highly infectious disease of domestic poultry and wild birds). The world’s livestock plagues also include avian influenza (bird flu) and other ‘zoonotic’ diseases, which, being transmissible between animals and people, directly threaten human as well as animal health.

McDermott and Grace warn that new trends, including rapid urbanization and climate change, could act as ‘wild cards,’ altering the present distribution of diseases, sometimes ‘dramatically for the worse.’ The authors say developing countries need to speed up their testing and adoption of new approaches, appropriate for their development context, to detect and then to stop or contain livestock epidemics before they become widespread.

In a separate but related policy analysis to be presented at the New Delhi conference, McDermott and Grace focus on links between agricultural intensification and the spread of zoonotic diseases. The researchers warn of a dangerous disconnect: the agricultural intensification now being pursued in the developing world, they say, is typically focused on increasing food production and profitability, while potential effects on human health remain ‘largely ignored.’

A remarkable 61 percent of all human pathogens, and 75 percent of new human pathogens, are transmitted by animals, and some of the most lethal bugs affecting humans originate in our domesticated animals. Notable examples of zoonotic diseases include avian influenza, whose spread was primarily caused by domesticated birds; and the Nipah virus infection, which causes influenza-like symptoms, often followed by inflammation of the brain and death, and which spilled over to people from pigs kept in greater densities by smallholders.

The spread and subsequent establishment of avian influenza in previously disease-free countries, such as Indonesia, was a classic example, McDermott and Grace say, of the risks posed by high-density chicken and duck operations and long poultry ‘value chains,’ as well as the rapid global movement of both people and livestock. In addition, large-scale irrigation aimed at boosting agricultural productivity, they say, has created conditions that facilitate the establishment of the Rift Valley fever virus in new regions, with occasional outbreaks killing hundreds of people along with thousands of animals.

The economic impacts of such zoonotic diseases are enormous. The World Bank estimates that if avian influenza becomes transmissible from human to human, the potential cost of a resulting pandemic could be USD3 trillion. Rich countries are better equipped than poor countries to cope with new diseases—and they are investing heavily in global surveillance and risk reduction activities—but no one is spared the threat as growing numbers of livestock and easy movement across borders increase the chances of global pandemics.

But while absolute economic losses from livestock diseases are greater in rich countries, the impact on the health and livelihoods of people is worse in poor countries. McDermott and Grace point out, for example, that zoonotic diseases and food-borne illnesses associated with livestock account for at least 16 percent of the infectious disease burden in low-income countries, compared to just 4 percent in high-income nations.

Yet despite the great threats posed by livestock diseases, McDermott and Grace see a need for a more intelligent response to outbreaks that considers the local disease context as well as the livelihoods of people. They observe that ‘while few argue that disease control is a bad thing, recent experiences remind us that, if livestock epidemics have negative impacts, so too can the actions taken to control or prevent them.’

An exclusive focus on avian influenza preparedness activities in Africa relative to other more important disease concerns, they point out, invested scarce financial resources to focus on a disease that, due to a low-density of chicken operations and scarcity of domestic ducks, is unlikely to do great damage to much of the continent. And they argue that a wholesale slaughter of pigs in Cairo instituted after an outbreak of H1N1 was ‘costly and epidemiologically pointless’ because the disease was already being spread ‘by human-to-human transmission.’

McDermott and Grace conclude that to build surveillance systems able to detect animal disease outbreaks in their earliest stages, developing countries will need to work across sectors, integrating veterinary, medical, and environmental expertise in ‘one-health’ approaches to assessing, prioritizing and managing the risks posed by livestock diseases.

More information on why animals matter to health and nutrition: https://cgspace.cgiar.org/handle/10568/3152 and https://cgspace.cgiar.org/handle/10568/3149

Germany helps Africa fight bird flu by investing in its people

Substantial GTZ support provided to ILRI and AU-IBAR has provided 80 laboratory staff in 37 African countries with specialized knowledge in rapid detection of highly pathogenic avian influenza
 
This program of the German Technical Cooperation (GTZ) for early detection of bird flu in Africa did more than train people in advanced techniques for diagnosing a new disease. It invested in people, connecting them in a ‘who’s who’ of skilled African laboratory staff as well as a handful of international bird flu experts focusing on Africa. It united these laboratory experts in a common cause.

As Carola von Morstein, coordinator of the GTZ Task Force on Avian Influenza, puts it, ‘This—remarkably the first regional training in Africa to diagnose avian influenza—is helping to improve transparency, communication and information exchange in bird flu campaigns. We will publish in print and on the web a training manual so we can widely share the lessons learned in this training. One of those lessons is the great advantage to be gained in coordinating work to prevent and control bird flu across the continent.’

Staff at the International Livestock Research Institute (ILRI) and the Africa Union’s Interafrican Bureau for Animal Resources (AU-IBAR), who organized the series of intensive training courses conducted over the last year across the continent, are interested in continuing their work with GTZ to sustain this cooperation among agricultural, veterinary and medical experts. Such inter-sector cooperation in disease control is regrettably unusual in all countries but particularly so in those lacking resources to bring together experts from different ministries and disciplines.

ILRI’s research director John McDermott is excited about this cooperative aspect of the project. ‘The network of African veterinary and human diagnosticians created by this training over the past year has great potential. It has fostered “diagnostic champions” in Africa who are being consulted by their colleagues. The benefits of this will go beyond avian influenza to other important infectious diseases of both people and animals.’

ILRI’s director general Carlos Seré also sees opportunity to build on the momentum that has been created. ‘We’re interested to explore with others how this regional emergency training might be transformed into long-term indigenous capacity-building for better control of infectious diseases in Africa.’

Other partners involved in organizing the training courses or providing training materials were the Food and Agriculture Organization of the United Nations (FAO), the World Animal Health Organization (OIE), the World Health Organisation (WHO) and the U.S.-based Centres for Disease Control (CDC). ILRI and AU-IBAR worked closely together to conduct a basic 10-day training course that they held in three countries: Cameroon, Kenya and Senegal. They drew trainers from OIE/FAO/WHO avian influenza reference laboratories, ILRI, AU-IBAR, CDC-Kenya, the Institut Pasteur, the Centre Pasteur and African universities and research organizations.

These courses revealed that most African countries have the capacity to collect samples of bird flu virus, including the highly pathogenic H5N1 avian influenza virus, and ship these to designated laboratories for analyses. Some of these labs can also perform basic serological tests for bird flu virus. But few of them are equipped with the advanced diagnostic tests in molecular diagnosis and virology or with the BL3 facility (a laboratory built to a secure biosafety level 3) needed to handle the deadly live H5N1 virus. ILRI and AU-IBAR staff organizing the training courses targeted the few labs that did have these facilities to serve as regional reference laboratories and provided 20 of their staff with two advanced training courses (one in English, the other in French) conducted at South Africa’s ARC-Onderstepoort Veterinary Institute (OVI), in Pretoria, which is equipped with all the facilities needed for diagnosis of avian influenza. (OVI had previously trained staff in southern African countries.)

Funding for this project was provided by Germany’s Federal Ministry for Economic Cooperation and Development (BMZ) and implemented by GTZ within its ‘Poverty Reduction in Rural Areas’ project. The latter works to boost—in a sustained manner—the capacity of developing countries to prepare for and respond to outbreaks of bird flu. With uncommon foresight, this German project further helps countries implement preventive measures that help their farming communities maintain their livestock, the mainstay of livelihoods of the rural poor. Among the farm animals at risk from zoonotic diseases and conventional programs implemented to control them are many local poultry breeds kept by the poorest of the poor.

Carola von Morstein, leader of the GTZ Task Force conducting this pro-poor work fighting avian and human influenza, visited Nairobi this week to consult with ILRI and AU-IBAR directors and scientists who organized the training and tailored the English and French courses to suit African circumstances.

In early July, the first follow-up training took place in three veterinary laboratories in Ghana. Staffs of the laboratories in Accra, Pong Tamale and Kumasi were trained by the German Friedrich-Löffler-Institute (FLI). This Federal Research Institute for Animal Health has a Task Force for Epidemiology. GTZ and FLI are together providing training to affected countries such as Ghana. GTZ also procured for these laboratories equipment, such as Quick Tests Influenza Kits, V-bottomed Microtest-Plates and Pipettes, to ensure that the country is equipped for diagnosis of bird flu.

For more information about this GTZ project, email the GTZ task team:
carola.morstein-von@gtz.de> or
kerstin.schoell@gtz.de

or the Rene Bessin at AU-IBAR:
rene.bessin@au-ibar.org

or Duncan Mwangi or Roger Pellé at ILRI:
d.mwangi@cgiar.org and r.pelle@cgiar.org

Livestock biosciences for poverty alleviation: One more arrow in the quiver!

Proceedings of the 4th All Africa Conference on Animal Agriculture ‘The role of biotechnology in animal agriculture to address poverty in Africa’, now available for download

The theme of the 4th All Africa Conference on Animal Agriculture was ‘The role of biotechnology in animal agriculture to address poverty in Africa: Opportunities and challenges’. The conference, which was held in Arusha, Tanzania, in September 2005, was organized by the All Africa Society for Animal Production (AASAP) in association with the Tanzania Society for Animal Production (TSAP), and partnership with the International Livestock Research Institute (ILRI). The recently released proceedings contain over 50 papers by leading experts in biotechnology covering animal health, genetic diversity and improvement and animal feeds and nutrition. The technologies reported ranged from the rather conventional approaches to the more advanced molecular techniques.

ILRI’s director general, Carlos Seré, and ILRI’s director of biotechnology, Ed Rege, presented a paper on Agricultural biotechnology for poverty alleviation at the first plenary session. The paper highlights opportunities for livestock biotechnologies in the areas of animal health through new/improved vaccines and diagnostics, genetic improvement of livestock, conservation of indigenous breeds and genetic diversity, and improving the nutritional quality of feeds. They argue animal agriculture will continue to be of considerable importance for poverty alleviation in Africa for some time to come, and that appropriate applications of biosciences can increase the pace of Africa’s agricultural and economic development.

‘Economic development in Africa will, of necessity, have to be initially linked to agriculture (broadly defined to include crop, livestock, forestry and fish). Staple crops and livestock are most likely to promote economic growth in the continent. To date, public sector investment in biotechnology in Africa has led to few products.

‘However, similar to what is happening in Asia and Latin America, there is a great opportunity for Africa to mobilize science to create wealth for its people and achieve higher economic growth.

‘If a new technology is useful and the price is right, the spread is almost unstoppable. Clearly, biotechnology is not a substitute for other technologies, but is an additional arsenal which should be used as and when appropriate to increase the pace of agricultural development. It is simply another arrow in the quiver!’

Copies of this new publication will be made available at the Africa Agricultural Science Week and the 4th Forum for Agricultural Research in Africa (FARA) General Assembly in Johannesburg on 10– 16 June 2007.

Download the book: https://cgspace.cgiar.org/bitstream/10568/2275/1/Role%20of%20biotechnology.pdf