Experts warn rapid losses of Africa’s native livestock threaten continent’s food supply

N'DamaHerd_WestAfrica

Resilient disease-resistant, 'ancient' West African cattle, such as these humpless longhorn N'Dama cattle, are among breeds at risk of extinction in Africa as imported animals supplant valuable native livestock

Urgent action is needed to stop the rapid and alarming loss of genetic diversity of African livestock that provide food and income to 70 percent of rural Africans and include a treasure-trove of drought- and disease-resistant animals, according to a new analysis presented today at a major gathering of African scientists and development experts.

Experts from the International Livestock Research Institute (ILRI) told researchers at the 5th African Agriculture Science Week (www.faraweek.org), hosted by the Forum for Agricultural Research in Africa (FARA), that investments are needed now to expand efforts to identify and preserve the unique traits, particularly in West Africa, of the continent's rich array of cattle, sheep, goats and pigs developed over several millennia but now under siege. They said the loss of livestock diversity in Africa is part of a global 'livestock meltdown'. According to the United Nations Food and Agriculture Organization, some 20 percent of the world's 7616 livestock breeds are now viewed as at risk.

'Africa's livestock are among the most resilient in the world yet we are seeing the genetic diversity of many breeds being either diluted or lost entirely', said Abdou Fall, leader of ILRI's livestock diversity project for West Africa. 'But today we have the tools available to identify valuable traits in indigenous African livestock, information that can be crucial to maintaining and increasing productivity on African farms.'

Fall described a variety of pressures threatening the long-term viability of livestock production in Africa. These forces include landscape degradation and cross-breeding with 'exotic' breeds imported from Europe, Asia and the America.

For example, disease-susceptible breeds from West Africa's Sahel zone are being cross-bred in large scale with breeds adapted to sub-humid regions, like southern Mali, that have a natural resistance to trypanosomosis.

Trypanosomosis kills an estimated three to seven million cattle each year and costs farmers billions of dollars each year in, for example, lost milk and meat production and the costs of medicines and prophylactics needed to treat or prevent the disease. While cross-breeding may offer short-term benefits, such as improved meat and milk production and greater draft power, it could also cause the disappearance of valuable traits developed over thousands of years of natural selection.

ILRI specialists are in the midst of a major campaign to control development of drug resistance in the parasites that cause this disease but also have recognized that breeds endowed with a natural ability to survive the illness could offer a better long-term solution.

The breeds include humpless shorthorn and longhorn cattle of West and Central Africa that have evolved in this region along with its parasites for thousands of years and therefore have evolved ways to survive many diseases, including trypanosomosis, which is spread by tsetse flies, and also tick-borne diseases. Moreover, these hardy animals have the ability to withstand harsh climates. Despite their drawbacks—the shorthorn and longhorn breeds are not as productive as their European counterparts—their loss would be a major blow to the future of African livestock productivity.

'We have seen in the short-horn humpless breeds native to West and Central African indiscriminate slaughter and an inattention to careful breeding that has put them on a path to extinction', Fall said . 'We must at the very least preserve these breeds either on the farm or in livestock genebanks because their genetic traits could be decisive in the fight against trypanosomosis, while their hardiness could be enormously valuable to farmers trying to adapt to climate change.'

Other African cattle breeds at risk include the Kuri cattle of southern Chad and northeastern Nigeria. The large bulbous-horned Kuri, in addition to being unfazed by insect bites, are excellent swimmers, having evolved in the Lake Chad region, and are ideally suited to wet conditions in very hot climates.

ILRI's push to preserve Africa's indigenous livestock is part of a broader effort to improve productivity on African farms through what is known as 'landscape genomics'. Landscape genomics involves, among other things, sequencing the genomes of different livestock varieties from many regions and looking for the genetic signatures associated with their suitability to a particular environment.

ILRI experts see landscape genomics as particularly important as climate change accelerates, requiring animal breeders to respond every more quickly and expertly to shifting conditions on the ground. But they caution that in Africa in particular the ability of farmers and herders to adapt to new climates depends directly on the continent's wealth of native livestock diversity.

'What we see too often is an effort to improve livestock productivity on African farms by supplanting indigenous breeds with imported animals that over the long-term will prove a poor match for local conditions and require a level of attention that is simply too costly for most smallholder farmers', said Carlos Seré, ILRI's Director General. 'What marginalized livestock-keeping communities need are investments in genetics and genomics that allow them to boost productivity with their African animals, which are best suited to their environments.'

Seré said new polices also are needed that encourage African pastoralist herders and smallholder farmers to continue maintaining their local breeds rather than abandoning them for imported animals. Such policies, he said, should include breeding programs that focus on improving the productivity of indigenous livestock as an alternative to importing animals.

Steve Kemp, who heads ILRI's genetics and genomics team, added that in addition to conservation on the farm, there must also be investments in preserving diversity by freezing sperm and embryos because farmers cannot be asked to forgo productivity increases solely in the name of diversity conservation.

'We cannot expect farmers to sacrifice their income just to preserve the future potential of diversity', Kemp said. 'We know that diversity is critical to dealing with the challenges that confront African farmers, but the valuable traits that may be important in the future are not always immediately obvious.'

Kemp called for a new approach to measuring the characteristics of livestock genetic resources. Today, he said, these estimates focus mainly on such things as the value of meat, milk, eggs and wool and do not include qualities that can be of equal or even greater importance to livestock keepers in Africa and other developing regions. These attributes include the ability of an animal to pull a plough, provide fertilizer, serve as a walking bank or savings account, and act as an effective form of insurance against crop loss.

But associating this wider array of attributes with an animal's DNA requires new ways of exploring and understanding livestock characteristics in a region where there is so much diversity in so many different environments.

'The tools are available to do this now, but we need the will, the imagination and the resources before it is too late', Kemp said.

New project to reduce chicken disease in Ethiopia

Chicken on LUO RU BIN's farm

A new study of genetic resistance to disease in Ethiopia’s indigenous chicken breeds is scheduled to start later this year. In collaboration with the Ethiopian Institute for Agricultural Research, the University of Liverpool, Roslin Institute, the Univerisity of Edinburgh and the University of Nottingham, researchers from the International Livestock Research Institute (ILRI) will seek to identify ‘the causes of infectious diseases that have a major impact on poultry production in Ethiopia.’

Scheduled to start in September 2010, the study will take place in the district of Jarso, in eastern Ethiopia, and in Horro, in the west of the country. The results of this research will be linked to an ongoing poultry breeding program to improve resistance to ‘priority infectious diseases’ and thereby enhance the productivity of the country’s poultry sector.

Poultry play important economic, nutritional and socio-cultural roles in the livelihoods of poor rural households in Ethiopia and many other developing countries, where birds are widely integrated into smallholder production systems and help households cope with hunger and poverty.

Buying and rearing poultry is often a first step out of poverty. Women tend to own and manage chickens, usually native chicken varieties, which provide them with their only independent source of cash income.

Although breeding programs for local chickens have shown that rapid improvement in productivity is possible, researchers have yet to identify and select the optimal breeds for improving, by, for example, providing resistance to common infectious diseases.

Tadelle Dessie, a team leader of ILRI’s biotechnology theme in Ethiopia, and one of the leaders of the chicken project, says ‘enhanced genetic resistance through selective breeding is still an under-exploited low-cost opportunity for disease control in low-input poultry production systems’. He says the study will investigate genetic variability in the resistance of local chicken ecotypes to major infectious diseases hurting village poultry production in Ethiopia. Results of the research will inform strategies for improving both disease resistance and productivity.

Indigenous chicken varieties are well adapted to local environments, but local birds tend to grow slowly and produce fewer and smaller eggs than commercial varieties. Infectious diseases, however, can wipe out flocks of exotic, higher-producing, poultry.

Knowledge from this study should enable Ethiopian policymakers and animal health professionals to design more precise disease-control plans. The study itself should help improve Ethiopia’s scientific capacity in this field by training local scientists and enhancing laboratory facilities for poultry testing.

Staff are now being recruited for the project, which will be launched in September.

Serengeti surely SHALL die if a proposed highway bisects its northern wilderness—and if its human neighbours remain poverty-stricken

Zebra and wildebeest in the Masai Mara Game Reserve

Zebra and wildebeest in Kenya’s Masai Mara Game Reserve (photo credit: ILRI/Elsworth).

The New York Times and other media are reporting this week that one of the greatest wildlife spectacles on earth—the annual migration of nearly 2 million wildebeest and zebra from the drying savannas of the Serengeti, in Tanzania, to the wetter, greener, pastures of Kenya’s adjacent Masai Mara, and back again—is threatened by a proposed new national transit road for northern Tanzania that would cut right across the migration route of these vast herds of ungulates, likely leading to the collapse of this migration and possibly the crash of this ecosystem as a whole.

Kenya’s Masai Mara is the only year-round water source in the Greater Serengeti, and thus serves as critical dry-season grazing grounds for these vast herds of big mammals.

Just one of the problems such a road would bring is a greater disease burden to people, livestock and wildlife alike. In her extensive and useful research notes to her recent article, ‘Road Kill in the Serengeti’, in the New York Times, Olivia Judson refers readers to a scientific paper written by Eric Fevre, of the Zoonotic and Emerging Diseases research group at the University of Edinburgh, now based at the International Livestock Research Institute (ILRI) in Kenya while working on a 3-year human-animal disease research project in Busia District. Fevre describes the spread of animal diseases through animal transportation in his article, ‘Animal movements and the spread of infectious diseases’ (Trends in Microbiology, 2006).

Perhaps just in time, just this month former ILRI ecologist Robin Reid, now director of the Center for Collaborative Conservation at Colorado State University, in Fort Collins, USA, began a project in Kenya that is putting radio collars on wildebeest to learn more precisely what routes the animals take in their migration. This project’s members are involving Maasai schoolchildren, who are naming the wildebeest, which they will then be able to follow. The wildebeest collars send regular tracking signals to Safaricom, which are then sent to Colorado, where the routes are posted on a web map that the schoolchildren can follow.

This year’s annual wildebeest migration has already begun. Herds are reported to have crossed the common border of Kenya/Tanzania from Northern Serengeti into Masai Mara, about 4 days ago. ‘What has been unusual about this year’s migration,’ says Paul Kirui, in the Masai Mara, ‘is that the main migration from the south arrived in the Mara early ahead of the Loita herds—the Kenyan resident herds of wildebeest—which usually migrate into the Mara from the east of the park. Normally when we start seeing them move into the park, it is a sign that the main migration from the south is on the way.’

The first population of wildebeest that Reid’s team darted and then tagged with radio collars in the Mara is the Loita group that remains resident in Kenya all year round. Or so the researchers think. The radio collars, now fixed on the first 15 wildebeest, have already started to report back and will be letting scientists, and those schoolchildren, know just where they go, and when.

Reid’s return gave ILRI cause to revisit two remarkable films about her ILRI research in the Mara. Counting in a Disappearing Land (ILRI, 11 minutes, 2007) describes Reid’s project with a Maasai community that has traditionally herded their livestock in Kenya’s wildlife-rich Masai Mara region. This ILRI project was looking to find ways of balancing the needs of people, lands and wildlife. In The Great Migration (CBS ’60 Minutes’, 15 minutes, October 2009), Scott Pelley interviews Reid about the threats to this natural spectacle and the part local Masai are playing to address these threats.

Collaborative conservation may indeed be the answer to saving the Serengeti ecosystem. Protecting majestic wild places and the wildlife they support, places that instill wonder in us, matters, of course, but so does protecting millions of people from severe poverty, chronic hunger and the afflictions that come in their wake: disease and untimely death.

With a large percentage of its land area under protection, Tanzania is a world leader in biodiversity conservation. It is also very, very poor. How this tug at resources—whether the Serengeti Plains will be used for wildlife tourism or other kinds of commerce—will play out may depend on how much the local communities living in poverty near the wildlife benefit from saving this, the last of the great migrations of big mammals on Earth.

More . . . (New York Times, 15 June 2010)

An alternative, southern road in Tanzania is discussed on a webpage of the Frankfurt Zoological Society.

See Paul Kirui’s blog on 17 June 2010 the migration on Masai Mara Updates.

Location, location, location: Geographic techies explore ways of navigating a better future

If, as the popular science saying goes, we can understand only what we can measure, what shall we say about what we can locate on a map? Is that, too, a foundation for real understanding, or is mapping more like taxonomy, more critical to scientific knowledge (categorization) than to scientific understanding (causation)?

A group of some 80 international and developing-country experts in the use of geographical information systems (GIS), remote sensing and other high-tech tools developed in the field of what was once innocently called ‘geography’ met in Nairobi last week (8–12 June 2010) to see if they couldn’t, by working together better, speed work to reduce world poverty, hunger and environmental degradation. (Oddly, this gathering of people all about ‘location’ tend to use a forest of acronyms — GIS, ArcGIA, CSI, ESRI, ICT-KM, AGCommons, CIARD, CGMap  — in which the casual visitor is likely to get lost.)

The participants at this meeting, called the ‘Africa Agricultural GIS Week’, aimed to find ways to offer more cohesive support to the international community that is working to help communities and nations climb out of poverty through sustainable agriculture.

The world’s big agricultural problems – too little food to feed the 6-plus and growing billions of people on the planet, too extractive (unsustainable) ways of producing food, too little new land left to put to food production, too few viable agricultural markets serving the poor, too high food prices for the urban poor, too extreme and variable climates for sustaining rural agricultural livelihoods – appear to be fast closing in on us. Our global agricultural problems are of an increasingly connected and complex nature. Most experts agree that silver-bullet solutions are not the answer. We must tackle these problems holistically or, in the jargon of agricultural science, from a systems-based perspective.

And that, perhaps, is where these high-tech geographers can most help us navigate the future of small-scale food production.

VISH NENE, Director of the Biotechnology Theme

At the opening of this Week’s events, held at the Nairobi campus of the International Livestock Research Institute (ILRI), Vish Nene, a molecular biologist who directs ILRI’s Biotechnology Theme, spoke on behalf of ILRI’s director general, Carlos Seré, who was on mission travel abroad. Nene welcomed Kenya’s Assistant Minister of Agriculture and MP, Hon Japhet Mbiuki, who gave a keynote speech on behalf of Kenya’s Minister for Agriculture, Hon Dr Sally Kosgei.

Nene said that ILRI was particularly pleased to be hosting this meeting, as it has a long track record in the use of GIS in its research portfolio, having developed a GIS Unit first some 22 years ago and being a leader today in large-scale, fine-resolution, mapping of the intersection of small-scale livestock enterprises and global poverty.

An M.O. Notenbaert, Scientist, GIS Analyst, Targeting and Innovation

The second day of the Week, An Notenbaert, a GIS expert at ILRI, gave the participants an overview of what ILRI has been doing in the area of geospatial research, and what particular kinds of geospatial services and expertise ILRI could offer new ‘mega-programs’ of the Consultative Group on International Agricultural Research (CGIAR).

Notenbaert sketched two of ILRI’s research projects that require a ‘spatial’ foundation.

Protecting remote herders with their first drought-related livestock insurance

The first ILRI project Notenbaert described is one that this year is piloting ‘index-based livestock insurance’ for remote Kenyan livestock herders. This project, she said, is all about managing risks in dry, harsh lands, where most people’s livelihoods still depend on livestock herding. Because traditional livestock insurance is impractical for the dispersed herding populations of Kenya’s northern frontier, ILRI researchers initiated a study on the feasibility of using information not about the number of livestock deaths in droughts over the years, but rather an indicator associated with such drought-related animal deaths. ‘We are using satellite images of vegetation of the region to come up with a livestock mortality index,’ she said. ‘This is quite a neat application of remote sensing data.’

The pilot project was launched in Kenya’s Marsabit District in January 2010. Livestock owners in the district have bought insurance premiums that will pay out not when their animals die (which would require a logistically complex and expensive procedure to verify animal deaths), but rather when satellite images show that livestock forage has dipped below a predetermined threshold, with the likely result of many animals dying.

Down-scaling climate projections for more useful information for policymakers

The second ILRI project Notenbaert described to the assembled group of spatial experts is working to make more local, and thus more useful, assessments of the impacts of climate change on poor communities in the tropics.

Little information, for example, is available on climate change in East Africa, whether at country or local levels. While a projected increase in rainfall in East Africa to 2080, extending into the Horn of Africa, is robust across the ensemble of Global Circulation Models available, other work suggests that climate models have probably underestimated the warming impacts of the Indian Ocean and thus may well be over-estimating rainfall in East Africa during the present century.

In 2006, ILRI researchers estimated changes in aggregate monthly values for temperature and precipitation. Possible future long-term monthly climate normals for rainfall, daily temperature and daily temperature diurnal range were derived by down-scaling the outputs of Global Circulation Models to WorldClim v1.3 climate grids at a resolution of 18 square kilometres. Outputs from several Global Circulation Models and scenarios made by the Special Report on Emissions Scenarios (Intergovernmental Panel on Climate Change, 2000) were used to derive climate normals for 2000, 2005, 2010, 2015, 2020, 2025 and 2030 using the down-scaling methodology described in 2003 by ILRI researchers. Although the figures derived for Kenya correspond with findings of long-term wetting, the ILRI researchers also found the regional variations in precipitation to be large, with the coastal region likely to become drier, for example, while Kenya’s highlands and northern frontier are likely to become wetter.

For more information, see:

Africa Agriculture GIS Week

Index-based Livestock Insurance

Climate Projection Data Download

AGCommons: Location-specific information services for agriculture

Coherence in Information for Agricultural Research for Development

A frozen zoo in Nottingham ‘bio-banks’ wildlife threatened with extinction

HanotteOlivier_08APM

We thought it appropriate in this United Nations ‘International Year of Biodiversity’ to highlight not only work by the International Livestock Research Institute (ILRI) and its partners (see ‘Livestock Diversity Needs Genebanks Too’, an opinion piece by ILRI Director General Carlos Seré published on the SciDevNet website on 21 May 2010) to conserve breeds and genes of native livestock that are rapidly disappearing, but also those of wild animals similarly threatened.

The Frozen Ark is such an initiative. It is led by Olivier Hanotte, an animal geneticist who spent many years at ILRI working to conserve livestock genetic resources indigenous in developing countries. These days Hanotte is running The Frozen Ark Consortium, a worldwide group of institutions coordinated from an office within a Frozen Ark Unit at the School of Biology at the University of Nottingham in the United Kingdom: Frozen.Ark@nottingham.ac.uk

The aim of the Frozen Ark is to preserve, for hundreds if not thousands of years, critical information about the species collected. As their website explains: ‘Despite the best efforts of conservationists, thousands of extinctions have occurred before the animals could be rescued. There has not been enough knowledge or money to stem the tide. This pattern is being repeated across all animal groups and emphasises the importance of collecting the DNA and cells of endangered animals before they go extinct. The loss of a species destroys the results of millions of years of evolution. If the cells and DNA are preserved, a very great deal of information about the species is saved. . . . For animals endangered but not yet extinct, the stored DNA and cells can also provide renewable resources of variation for revitalising captive breeding populations when the loss of variation through inbreeding threatens their survival.’

What has caught the public’s imagination is the possibility—a possibility ever more credible in light of ongoing, transformative, breakthroughs in molecular biology, particularly genetics and genomics, as well as drastic falls in the cost of sequencing genomes—that in future scientists will be able to reconstruct extinct animals from such preserved material.

‘While the reconstruction of extinct species from frozen material is not yet practicable, the possibility is not remote,’ says Hanotte. ‘If we fail to preserve the DNA and cells, the information and the possibilities will be lost forever. If DNA is stored in liquid nitrogen at -196 degrees Centigrade, it should survive intact for many hundreds, and possibly thousands, of years.’

The International Union of the Conservation of Nature (IUCN) Red List distinguishes more than 16,000 animal species that are under threat. The Fozen Ark aims eventually to collect the DNA of all these species, and the viable cells (somatic cells, eggs, embryos and sperm) of as many as possible, over the next 50 years. But Hanotte is quick to point out that the Frozen Ark Project is not a substitute for conserving the world’s diverse wildlife species, but is rather ‘a practical and timely backup of their genetic material.’

For more information, visit the Frozen Ark Website.

And watch the online version of this week’s broadcast (30 Mar 2010) of the American television program ’60 Minutes’, which explores the possibility of Resurrecting the Extinct from frozen samples.

Livestock vaccine offers lifeline to many

ITM Vaccine

A vaccine is being made available to save the lives of a million cattle in sub-Saharan Africa against a lethal disease and to help safeguard the livelihoods of people who rely on their cattle for their survival.

East Coast fever is a tick-transmitted disease that kills one cow every 30 seconds. It puts the lives of more than 25 million cattle at risk in the 11 countries of sub-Saharan Africa where the disease is now endemic. The disease endangers a further 10 million animals in regions such as southern Sudan, where it has been spreading at a rate of more than 30 kilometres a year. While decimating herds of indigenous cattle, East Coast fever is an even greater threat to improved exotic cattle breeds and is therefore limiting the development of livestock enterprises, particularly dairy, which often depend on higher milk-yielding crossbred cattle. The vaccine could save the affected countries at least a quarter of a million US dollars a year.

Registration of the East Coast fever vaccine is central to its safety and efficacy and to ensuring its sustainable supply through its commercialization. The East Coast fever vaccine has been registered in Tanzania for the first time, a major milestone that will be recognized at a launch event in Arusha, northern Tanzania, on May 20. Recognizing the importance of this development for the millions whose cattle are at risk from the disease, governments, regulators, livestock producers, scientists, veterinarians, intellectual property experts, vaccine distributors and delivery agents as well as livestock keepers – all links in a chain involved in getting the vaccine from laboratory bench into the animal – will be represented.

An experimental vaccine against East Coast fever was first developed more than 30 years ago at the Kenyan Agricultural Research Institute (KARI). Major funding from the UK Government’s Department for International Development (DFID) and others enabled work to produce the vaccine on a larger scale. When stocks from 1990s ran low, the Africa Union/Interafrican Bureau for Animal Resources and chief veterinary officers in the affected countries asked the International Livestock Research Institute (ILRI) to produce more and ILRI subsequently produced a million doses of the vaccine to fill this gap. But the full potential for livestock keepers to benefit from the vaccine will only be achieved through longer term solutions for the sustainable production, distribution and delivery of the vaccine.

With $28US million provided by the Bill & Melinda Gates Foundation and DFID, a not-for-profit organization called GALVmed (Global Alliance for Livestock Veterinary Medicines) is fostering innovative commercial means for the registration, commercial distribution and delivery of this new batch of the vaccine. A focus on sustainability underpins GALVmed’s approach and the Global Alliance is bringing public and private partners together to ensure that the vaccine is available to those who need it most.

Previous control of East Coast fever relied on use of acaracide dips and sprays, but these have several drawbacks. Ticks can develop resistance to acaracides and regular acaricide use can generate health, safety and environmental concerns. Furthermore, dipping facilities are often not operational in remote areas.

This effective East Coast fever vaccine uses an ‘infection-and-treatment method’, so-called because the animals are infected with whole parasites while being treated with antibiotics to stop development of disease. Animals need to be immunized only once in their lives, and calves, which are particularly susceptible to the disease, can be immunized as early as 1 month of age.

Over the past several years, the field logistics involved in mass vaccinations of cattle with the infection-and-treatment method have been greatly improved, due largely to the work of a private company, VetAgro Tanzania Ltd, which has been working with Maasai cattle herders in northern Tanzania. VetAgro has vaccinated more than 500,000 Tanzanian animals against East Coast fever since 1998, with more than 95% of these vaccinations carried out in remote pastoral areas. This vaccination campaign has reduced calf mortality in herds by 95%. In the smallholder dairy sector, vaccination reduced the incidence of East Coast fever by 98%. In addition, most smallholder dairy farmers reduced their acaracide use by at least 75%, which reduced both their financial and environmental costs.

Notes for Editors

What is East Coast fever?
East Coast fever is caused by Theleria parva (an intracellular protozoan parasite), which is transmitted by the brown ear tick Rhipicephalus appendiculatus. The parasites the tick carries make cattle sick, inducing high fever and lympho-proliferative syndrome, usually killing the animals within three weeks of their infection.

East Coast fever was introduced to southern Africa at the beginning of the twentieth century with cattle imported from eastern Africa, where the disease had been endemic for centuries. This introduction caused dramatic cattle losses. The disease since then has persisted in 11 countries in eastern, central and southern Africa – Burundi, Democratic Republic of Congo, Kenya, Malawi, Mozambique, Rwanda, Sudan, Tanzania, Uganda, Zambia and Zimbabwe. The disease devastates the livelihoods of small-scale mixed crop-and-livestock farmers, particularly smallholder and emerging dairy producers, as well as pastoral livestock herders, such as the Maasai in East Africa.

The infection-and-treatment immunization method against East Coast fever was developed by research conducted over three decades by the East African Community and the Kenya Agricultural Research Institute (KARI) at Muguga, Kenya (www.kari.org). Researchers at the International Livestock Research Institute (ILRI), in Nairobi, Kenya (www.ilri.org), helped to refine the live vaccine. This long-term research was funded by the UK Department for International Development (DFID) (www.dfid.gov.uk) and other donors of the Consultative Group on International Agricultural Research (CGIAR) (www.cgiar.org).

The first bulk batch of the vaccine, produced by ILRI 15 years ago, has protected one million animals against East coast fever, with the survival of these animals raising the standards of living for many livestock keepers and their families. Field trials of the new vaccine batch, also produced at ILRI, were completed in accordance with international standards to ensure that it is safe and effective.

How is the vaccine stored and administered?
Straws of the East Coast fever vaccine are stored in liquid nitrogen until needed, with the final preparation made either in an office or in the field. The vaccine must be used within six hours of its reconstitution, with any doses not used discarded. Vaccination is always carried out by trained veterinary personnel working in collaboration with livestock keepers. Only healthy animals are presented for vaccination; a dosage of 30% oxytetracycline antibiotic is injected into an animal’s muscle while the vaccine is injected near the animal’s ear. Every animal vaccinated is given an eartag, the presence of which subsequently increases the market value the animal. Young calves are given a worm treatment to avoid worms interfering with the immunization process.

Note
Case studies illustrating the impact of the infection-and-treatment vaccine on people’s lives are available on the GALVmed website at: www.galvmed.org/path-to-progress
For more information about the GALVmed launch of the live vaccine, on 20 May 2010, in Arusha, Tanzania, go to www.galvmed.org/

Genebanks needed to save farm animal diversity of the South—and assure the world’s future food supply

Carlos Sere amongst farm animals

Opinion piece in SciDev.net by Carlos Seré, Director General ILRI

Today, scientists are reconstructing the genomes of ancient mastodons, found in the frozen north. Dreams of resurrecting lost species rumble in the collective imagination. At the same time, thousands of still-existing farm animal breeds—nurtured into being by generations of farmers attuned to their environments—are slipping into the abyss of extinction, below the wire of awareness.

Livestock genetic diversity is highly threatened worldwide, but especially in the South, where the vast majority of remaining diversity resides. This diversity—of cattle, goats and sheep, swine and poultry—is as essential to the future world food supply as is the crop diversity now being stored in thousands of collections around the world and in a fail-safe crop genebank buried in the Arctic permafrost. But no comparable effort exists to conserve the animals or the genes of thousands of breeds of livestock, many of which are rapidly dying out.

Hardy and graceful Ankole cattle, raised across much of East and Central Africa, are being replaced by black-and-white Holstein-Friesian dairy cows and could disappear within the next 50 years. In Viet Nam, the percentage of indigenous sows declined from 72 per cent of the total population in 1994 to only 26 per cent just eight years later. In some countries, national chicken populations have changed practically overnight from genetic mixtures of backyard fowl to selected uniform stocks raised under intensive conditions.

Some 20 per cent of the world’s 7,616 breeds of domestic livestock are at risk, according to the Food and Agriculture Organization of the United Nations. And change is accelerating. Holstein-Friesian dairy cows are now raised in 128 countries in all regions of the world, and an astonishing 90 per cent of all cattle in the North are of just six tightly defined breeds.

Most endangered livestock breeds are in developing countries, where they are herded by pastoralists or tended by farmers who grow both crops and livestock on small plots of land. With survival a day-to-day issue for many of these small-scale farmers, they are unlikely to make conservation of their rare breeds a priority, at least not without significant assistance. From Africa to Asia, farmers of the South, like the farmers of Europe, Oceania and the Americas before them, are increasingly choosing the breeds that will produce more milk, meat and eggs to feed their hungry families and raise their incomes.

They should be supported in doing so. At the same time, the breeds that are being left behind not only have intrinsic value, but also may possess genetic attributes critical to addressing future food security challenges, in developed or developing countries, as the climate, pests and diseases all change. Policy support for their conservation is needed now. This support could be in the form of incentives that encourage farmers to keep traditional animals. For example, policies could support breeding programs that increase the productivity of local breeds, or they could facilitate farmers’ access to niche markets for traditional livestock products. And policymakers should take the value of indigenous breeds into account when designing restocking programs following droughts, disease epidemics, civil conflicts or other disasters that deplete animal herds.

But even such assistance will not enable developing-world farmers to stem all the losses of developing-world farm animals. A parallel, even bigger, effort, linking local, national and international resources, must be launched to conserve livestock genetic diversity by putting some of it ‘in the bank’. The cells, semen and DNA of endangered livestock should be conserved—frozen—and kept alive. The technology is available and has been used for years to aid both human and animal reproduction. It should also be used to conserve the legacy of 10,000 years of animal husbandry. Furthermore, such collections must be accompanied by comprehensive descriptions of the animals and the populations from which they were obtained and the environments under which they were raised.

We should know the type of milking goat that is able to bounce back quickly from a drought. We should know the breeds of cow that resist infection with the animal form of sleeping sickness. We should know the native chickens that can survive avian flu.

We should do all we can to assist farmers and herders in the conservation of these endangered animals—especially now, in the midst of rapid agricultural development. And if some of these treasured breeds fail to survive the coming decades of change, we should at least have faithfully stored and recorded their presence, and have preserved their genes. It is these genes that will help us keep all our options open as we look for ways to feed humanity and to cope with coming, yet unforeseen, crises.

US$4.4 million awarded for research to build a climate model able to predict outbreaks of infectious disease in Africa

Cow suffering from trypanosomosis

Scientists at the University of Liverpool, in the UK, and the International Livestock Research Institute (ILRI), in Kenya, are working with 11 other African and European partners on a US$4.4-million (UK£3 million-) project to develop climate-based models that will help predict the outbreak and spread of infectious diseases in Africa.

The researchers are working to integrate data from climate modelling and disease-forecasting systems so that the model can predict, six months in advance, the likelihood of an epidemic striking. The research, funded by the European Commission Seventh Framework, is being conducted in Ghana, Malawi and Senegal. It aims to give decision-makers the time needed to deploy intervention methods to stop large-scale spread of diseases such as Rift Valley fever and malaria, both of which are transmitted by mosquitoes.

It is thought that climate change will change global disease distributions, and although scientists know a lot about the climate triggers for some diseases, they don’t know much about how far into the future these disease events can be predicted. This new project brings together experts to investigate the links between climate and vector-borne diseases, including ‘zoonotic’ diseases, which are transmissible between animals and humans.

ILRI veterinary researcher Delia Grace says that diseases shared by people and animals are under-investigated although they are critically important for public health. ‘Fully 60% of all human diseases, and 75% of emerging diseases such as bird flu, are transmitted between animals and people,’ she said.

ILRI geneticist Steve Kemp said that the project is making use of ILRI’s advanced genomics capacities to analyse pathogens from the field and to integrate the data collected on both pathogen distribution and climatic factors. ‘From ILRI’s point of view,’ Kemp said, ‘this project is particularly exciting because it brings strong climate and weather expertise that complements systems recently built by ILRI and its partners to detect outbreaks of Rift Valley fever and to determine its spread.’

The new project also complements ILRI’s ongoing work to better control trypansomosis in West African livestock, a disease transmitted by tsetse flies. Trypanosomosis, which is related to sleeping sickness in humans, causes devastating losses of animals—along with animal milk, meat, manure, traction and other benefits—across a swath Africa as big as continental USA. Members of the new modeling project will conduct research in some of the same locations as ILRI’s West African trypanosomosis project, Kemp explained, and work with some of the same partner organizations, which should generate synergies that benefit both projects.

The risk of epidemics in tropical countries increases shortly after a season of good rainfall—when heat and humidity allow insects, such as mosquitoes, to thrive and spread diseases. Matthew Baylis, from Liverpool’s School of Veterinary Science, explained how this works with Rift Valley fever: ‘Rift Valley fever can spread amongst the human and animal population during periods of heavy rain, when floodwater mosquitoes flourish and lay their eggs. If this rainfall occurs unexpectedly during the dry season, when cattle are kept in the villages rather than out on the land, the mosquitoes can infect the animals at the drinking ponds. Humans can then contract the disease by eating infected animals. Working with partners in Africa, we can bring this information together to build a much more accurate picture of when to expect epidemics.

Andy Morse, from Liverpool’s School of Environmental Sciences, said the project combines historical and contemporary climate data with disease incidence information, including that for vector-borne diseases, as well as integrating monthly and seasonal forecasts. The resulting single, seamless, forecast system, Morse said, should allow projections of disease risk to be made beyond the conventional predictable time limit. ‘All this information will be fed into a decision-support system to be developed with decision-makers on national health issues’ in the three target countries.

The project was launched at a conference at the University of Liverpool on 19 April 2010.

For more information, contact ILRI scientist Steve Kemp. ILRI email contacts are formatted as follows: f.surname@cgiar.org: replace ‘f’ with the staff member’s first initial and replace ‘surname’ with the staff member’s surname.

The 13 research partners:
Abdus Salam International Centre for Theoretical Physics (Italy), Centre de Suivi Ecologique (Senegal), Consejo Superior de Investigaciones Cientificas (Spain), European Centre for Medium-Range Weather Forecasts (UK), Fundació Privada Institut Català de Ciències del Clima (Spain), Institut Pasteur de Dakar (Senegal), International Livestock Research Institute (Kenya), Kwame Nkrumah University of Science and Technology (Ghana), Universitaet zu Koeln (Germany), University Cheikh Anta Diop de Dakar (Senegal), University of Liverpool (UK), University of Malawi (Polytechnic & College of Medicine), University of Pretoria (South Africa)

Biologists in Nairobi to take part in two new animal health projects announced this week by the US National Science and Gates foundations

East Coast Fever

The National Science Foundation (NSF) of the United States announced on 12 May 2010 that the Foundation, in partnership with the Bill & Melinda Gates Foundation, is awarding 15 grants worth US$20 million in support of basic research for generating sustainable solutions to big agricultural problems in developing countries.

These are the first grants in a new five-year Basic Research to Enable Agricultural Development (BREAD) program, which is jointly funded by NSF and the Gates Foundation.

The awards in this first year of funding will allow leading scientists worldwide to work together in basic research testing novel and creative approaches to reducing longstanding problems faced by smallholder farmers in poor countries.

Scientists from the Nairobi, Kenya, animal health laboratories of the International Livestock Research Institute (ILRI) will participate in 2 of the 15 projects selected among the many submitted to BREAD for funding.

Biologists at New York and Michigan State universities and Regeneron Pharmaceuticals (USA), the Roslin Institute and the University of Edinburgh (UK) and ILRI (Kenya) will test a novel approach to developing cattle that are resistant to trypanosomosis, a deadly cattle disease that is closely related to sleeping sickness in humans and that holds back animal agriculture across a swath of Africa as large as continental USA.

In another project, scientists from the University of Vermont and Plum Island Animal Disease Center (USA) will work with the University of Copenhagen (Denmark) and ILRI on use of advanced genetics to develop vaccines for East Coast fever and other cattle diseases that threaten the livelihoods of millions of smallholder farmers in sub-Saharan Africa.

Go here for a 12 May 2010 news release from the US National Science Foundation: http://www.nsf.gov/news/news_summ.jsp?cntn_id=116932

A complete list of 2010 BREAD awards can be accessed at: http://www.nsf.gov/bio/pubs/awards/bread10.htm

East Coast fever vaccine comes to market in eastern and southern Africa

As the board of trustees of the International Livestock Research Institute (ILRI) meets in Addis Ababa, Ethiopia, this week, reviewing ILRI’s animal health research among other work, an ILRI vaccine project is highlighted in a new publication, DFID Research 2009–2010: Providing research evidence that enables poverty reduction. The UK Department for International Development (DFID) and the Bill & Melinda Gates Foundation both support the Global Alliance in Livestock Veterinary Medicines (GALVmed), which works to convert existing or near-market technologies into livestock medicines and vaccines for use in developing countries. The notable success of this strategy in 2009, says DFID, is an East Coast fever vaccine produced by ILRI. East Coast fever is a tick-transmitted disease that kills one cow every 30 seconds in eastern, central and southern Africa, where it threatens some 25 million cattle in 11 countries and is now putting at risk a further 10 million animals in new regions, such as southern Sudan, where the disease has been spreading at a rate of more than 30 kilometres a year. The disease is a major cattle killer. In herds kept by the pastoralist Maasai, it kills 20–50% of all unvaccinated calves, which makes it difficult and often impossible for the herders to plan for the future or to improve their livestock enterprises. A vaccine for East Coast fever could save over a million cattle and up to £170 million a year in the 11 countries where the disease is now endemic. An experimental vaccine against East Coast fever, which makes use of live but weakened parasites, has existed for more than three decades, with batches mass produced in ILRI’s Nairobi laboratories. Although constrained by the need for a ‘cold chain’ to keep the ‘live’ vaccine viable, field use of this vaccine in Tanzania and elsewhere has proved it to be highly effective and in demand by poor livestock keepers, who are paying for the vaccine to keep their animals alive. GALVmed has worked with ILRI and private companies, such as VetAgro Tanzania Ltd., to make East Coast fever vaccine available to the livestock keepers who need it most and to scale up production in future. With £16.5 million provided by DFID and the BMGF, GALVmed began working on the registration and commercial distribution and delivery of a new batch of the vaccine produced by ILRI. The vaccine was successfully registered in 2009 in Malawi and Kenya, with Tanzania and Uganda expected to follow soon. If it is approved in Uganda, it will be the first veterinary vaccine formally registered in that country. GALVmed is now working to establish viable commercial production and delivery systems, aiming that by the end of 2011, all aspects of the production and delivery of East Coast fever vaccine are in private hands.

Women scientist leading national project to conserve Vietnam’s native livestock breeds wins prestigious Kovalepskaia Award

Prof Dr Le Thi Thuy Prof Dr Le Thi Thuy, Director of the Department of Science and International Cooperation of Vietnam’s National Institute of Animal Husbandry, has been awarded the 2009 Kovalepskaia Award in recognition of her role as a woman scientist working on conservation of indigenous livestock breeds. The award is named after Sophia Kovalepskaia, an eminent 19th-century Russian mathematician. Thuy is serving as the national project director in Vietnam of a multi-national project scientists are leading at the International Livestock Research Institute (ILRI) to help conserve the indigenous farm animal genetic resources of Asia. This project is funded by the Global Environment Facility. The Alexander Von Humboldt Foundation of Germany bestows a bi-annual Sofia Kovalevskaya Award to promising young researchers from all fields. From Wikipedia: Sofia Kovalevskaya, 1850–1891, was the first major Russian female mathematician, responsible for important original contributions to analysis, differential equations and mechanics, and the first woman appointed to a full professorship in Northern Europe. Despite her obvious talent for mathematics, she could not complete her education in Russia. At that time, women there were not allowed to attend the universities. To study abroad, she needed written permission from her father (or husband). Accordingly, she contracted a "fictitious marriage" with Vladimir Kovalevsky, then a young paleontology student who would later become famous for his collaborations with Charles Darwin. They emigrated from Russia in 1867. In 1869, Kovalevskaya began attending the University of Heidelberg, Germany, which allowed her to audit classes as long as the professors involved gave their approval. Shortly after beginning her studies there, she visited London with Vladimir, who spent time with his colleagues Thomas Huxley and Charles Darwin, while she was invited to attend George Eliot's Sunday salons. There, at age nineteen, she met Herbert Spencer and was led into a debate, at Eliot's instigation, on ‘woman's capacity for abstract thought’. This was well before she made her notable contribution of the ‘Kovalevsky top’ to the brief list of known examples of integrable rigid body motion. After two years of mathematical studies at Heidelberg, she moved to Berlin, where she had to take private lessons, as the university would not even allow her to audit classes. In 1874 she presented three papers—on partial differential equations, on the dynamics of Saturn's rings and on elliptic integrals—to the University of Göttingen as her doctoral dissertation. This earned her a doctorate in mathematics summa cum laude, bypassing the usual required lectures and examinations. She thereby became the first woman in Europe to hold that degree. Her paper on partial differential equations contains what is now commonly known as the Cauchy-Kovalevski theorem, which gives conditions for the existence of solutions to a certain class of those equations. In 1889 she was appointed Professorial Chair holder at Stockholm University, the first woman to hold such a position at a northern European university. After much lobbying on her behalf (and a change in the Academy's rules), she was granted a Chair in the Russian Academy of Sciences, but was never offered a professorship in Russia. Kovalevskaya died of influenza in 1891 at age forty-one. Sofja Kowalewskaja

Scottish and Kenyan research groups collaborate to improve control of deadly cattle disease in Africa

ITM Vaccine New project launched to investigate how immunity develops in cattle to fatal diseases caused by different strains of tick-borne parasites

More than 1 in 5 people in sub-Saharan Africa live below the poverty line. Many of these people live in rural communities heavily dependent on livestock for their livelihoods. One of the most important diseases of cattle in this region is East Coast fever, a lethal infection of cattle caused by the tick-borne parasite Theileria parva. This disease afflicts cattle populations in 16 countries across eastern, central and southern Africa and is the most economically important cattle disease in 11 of these countries. Losses due to East Coast fever exceed US$300 million annually. Imported high-yielding breeds of cattle, which are increasingly being used to satisfy increasing demands for milk in this region, are particularly susceptible to this disease.
Although East Coast fever can be controlled by treating infected animals with anti-parasitic drugs and by regularly spraying or dipping animals with anti-tick chemicals, these methods are difficult to apply and costly for poor livestock keepers. Vaccination offers a more sustainable means of controlling the disease.
Cattle can be immunized against the disease by infecting them with live parasites while simultaneously treating the animals with long-acting antibiotics. Because several strains of the parasite exist in the field, this vaccination comprises a mixture of strains. A vaccine cocktail mixing three parasite strains is being used successfully in some endemic countries, but applying this so-called ‘live vaccine’ remains hindered by difficulties in maintaining the quality of the vaccine material and in finding ways to distribute the vaccine, which needs to be kept cold, cost-effectively to widely dispersed cattle herders. In addition, it remains uncertain whether the current mix of parasite strains in the vaccine is optimal for obtaining robust immunity.
Recent studies of East Coast fever have shown that the so-called ‘protective’ proteins of the causative parasite—that is, the antigenic molecules that are recognized by the T lymphocytes of the bovine immune system and thus help animals fight development of disease—vary among the different strains of the parasite that exist in the field. This project will build on these advances to investigate the nature and extent of variability in these antigens between parasite strains. This knowledge will help scientists understand the factors that determine which parasite strains induce protective immune responses in animals that have been vaccinated.
Results of the project should provide methods for maintaining high quality of the current live vaccine and identifying parasite strains that could be incorporated into an improved second-generation live vaccine. The information should also help researchers design new, genetically engineered, vaccines, which comprise not whole parasites but rather antigenic molecules of the parasite—and thus are safer, cheaper and easier to distribute than the current live vaccine.
 
‘This is an important project for us,’ said Philip Toye, a vaccine developer from International livestock Research Institute (ILRI). ‘The information we expect to generate will greatly increase our understanding of the current live vaccine that is being used to protect animals against East Coast fever. We can use this information to get this vaccine into wider use in the region.’
 
This project is being conducted jointly by scientific groups at the universities of Edinburgh and Glasgow, in Scotland, and at ILRI, in Nairobi. The project is part of a new initiative called Combating Infectious Diseases of Livestock in Developing Countries funded by the UK’s Biotechnology and Biological Services Research Council, the UK Department for International Development and the Scottish Government. ILRI’s research in this area is also supported by members of the Consultative Group on International Agricultural Research.