As a new round of bird flu hits China, livestock scientist advises to ‘panic slowly’

China

At the chicken market in Xining, Lanzhou Province, China (photo on Flickr by Padmanaba01).

By Matthew Davis

The initial news reports were slim on details but the reaction was swift. There were at least three people dead in China after apparently contracting influenza from birds. Prices of soybean—a major ingredient in livestock feed—immediately took a dive.

Then the death toll rose to five, virus samples were detected in pigeons, and in Shanghai authorities began slaughtering poultry flocks. Within a few days the death count was up to seven, then nine. And people started to wonder about a connection to all those pig carcasses floating down Shanghai waterways.

Such is the confusing swirl of information emanating from the latest incident in which a worrisome disease has passed from animal to human, a phenomena—and a quite common one at that—known as zoonoses. In this instance, it’s an influenza virus called H7N9 that appears to have originated in wild or domestic bird populations, but much about its source remains murky.

For Delia Grace, a veterinary epidemiologist at the International Livestock Research Institute (ILRI) who spends most of her waking hours studying zoonotic events around the world, there are two essential facts to keep in mind as the situation in China evolves. And they embody how difficult it can be to craft a proper response.

One: the vast majority of zoonoses outbreaks do not escalate to crisis proportions. But, two:  every now and then, as happened with Spanish flu in 1918 and AIDS in more recent times, an animal disease jumps to human hosts and causes a ‘civilization altering event’.

Grace suggests the appropriate reaction is to ‘panic slowly’. In other words, be prepared to move quickly if things get worse, but don’t over-react to the early reports. Also, keep in mind that, just based on what gets reported, a new disease emerges somewhere in the world about every four months.

For example, Grace noted that epidemiologists in the United Kingdom, Germany, and the Middle East are probably more concerned right now about a new and deadly corona virus that as of late March had killed 11 of the 17 people known to have been infected. There is evidence that at least one of the infections may have originated in racing camels.

Grace advises decision-makers in the public and private sector to channel the impulse to take action toward addressing conditions that are intensifying zoonotic threats.

We know that in certain parts of the world, livestock intensification is being pushed well beyond the limits of anything we have done in agriculture in the past’, she said. ‘There are hundreds of thousands of animals packed together and little transparency about how they are being managed. And that’s making disease experts pretty nervous.’

But Grace cautions against focusing solely on the risks posed by certain livestock practices and ignoring the fact that livestock are a major source of food and income for 1 billion of the world’s poorest people. She worries that misguided reactions to emerging zoonotic diseases can end up doing significant harm to their lives and livelihoods.

For example, in 2009, the Egyptian government  ordered the mass slaughter of pigs tended by Coptic Christians on the mistaken belief that the pigs were linked to the H1N1 flu pandemic. Also, the possible link in Asia between a different, and also deadly, form of avian influenza called H5N1 and ‘backyard’ poultry farming has prompted a shift to more industrial-scale production. Yet, as Grace points out, given the problems plaguing industrial operations in the region, this shift could actually increase the risk of zoonotic diseases while imperiling the food security of livestock keepers.

‘The proper reaction to the risks posed by emerging zoonotic diseases is not to indiscriminately slaughter animals. That could threaten the health of far more people by depriving them of their primary source of protein and other nutrients’, Grace said.

What we need to do is look at the many ways livestock production has gone wrong—lack of diversity in animals, using drugs to mask signs of diseases, dirty conditions—and put them to right.

Matthew Davis is a Washington DC-based science writer and policy analyst; he also serves as a senior consulting writer for Burness Communications.

Action learning, systemic change and sustainability, desired legacy of an Ethiopian R4D project (IPMS)

Kemeria Hussien at Ethiopian milk market

Kemeria Hussien, a young woman at a milk market in Meisso District, West Hararghe Zone, Ethiopia, 2011 (photo credit: ILRI/Apollo Habtamu).

On 28 March 2013, a team from the project ‘Improving Productivity and Market Success of Ethiopian farmers (or IPMS project) gave a ‘livestock live talk’ seminar at the Addis Ababa, Ethiopia, campus of the International Livestock Research Institute (ILRI). This seminar, given for 70 people physically present and a few more connected virtually via WebEx, happened in the middle of the research planning workshop for a project that is a ‘sequel’ to IPMS, called ‘LIVES’: Livestock and Irrigated Value chains for Ethiopian Smallholders.

ILRI staff members Dirk Hoekstra, Berhanu Gebremedhin and Azage Tegegne have been managing IPMS, and learning from it, since its inception in 2004. The legacy as well as the learning from the IPMS project will be applied in the LIVES project, as well as other initiatives led by ILRI and other parties involved in IPMS.

What choices?
This project to ‘improve the productivity and market success of Ethiopian farmers’ was nothing if not ambitious, and, for a research organization, opted for some relatively daring choices:

  • IPMS relied on developmental (uncontrolled) as well as experimental (controlled) research activities, which ranged along the spectrum of diagnostic, action-research and ‘impact research’ activities (so-called for the expected development impact they would have).
  • Some activities were outsourced to development partners rather than undertaken by the research team.
  • The project worked along entire value chains, from crop and livestock farmers and other food producers to rural and urban consumers, with the team restricting itself to introducing and facilitating the implementation of interventions validated by local stakeholders.
  • Rather than focus on value chain interventions exclusively, the IPMS researchers investigated farming production systems as a whole and focused on the role of agricultural extension in the uptake of research results and their integration in interventions.
  • The IPMS workers used ‘action learning’ methods, which appears to have enabled an on-going evolution in the development of their targeted value chains. This kind of learning approach also sped the adoption of new technologies and the implementation of interventions and encouraged the team to use failures as fuel to modify the project’s trajectory.

. . . Led to what insights?
Insights from the project team were at the core of this ‘live talk’, with the lessons IPMS learned simple and straightforward; some examples follow.

Technology generation by itself is not enough to achieve developmental outcomes and impacts – Several interventions in the value chain development approach need to be implemented together to achieve impact.

Research for development can be implemented well in a research environment, i.e., it is possible to combine rigorous research with development processes without sacrificing the quality of scientific research or the generation of robust evidence.

Knowledge management and capacity development—using, among other methods, innovative information and communication technologies and approaches such as farming radio programs, local information portals connected to local knowledge centres and e-extension—are key to development of responsive extension systems as well as women and men farmers working to transform subsistence agriculture into sustainable economic enterprises.

Gathering those lessons was itself far from straightforward. The IPMS team experienced difficulties in negotiating value chain developments and the specific interventions that were felt as necessary, and in making choices among all actors involved in the value chain (e.g., a failed experiment to market sunflowers) because of market failures and insufficient returns on investments. The team also realized that working in an adaptive manner across a broad value chain and extension framework implies letting go of control and of tight deadlines, but can improve relations among value chain actors and their joint interventions.

As ILRI’s new LIVES project is now in full swing, and as a new long-term ILRI strategy demands that ILRI take a more coherent approach to making development impacts, these insights from  IPMS can help guide those undertaking new initiatives of ILRI and of its partners.

Watch and listen to this seminar here: https://www.ilri.org/livestream.

View the slide presentation here: Agriculture research for crop and livestock value chains development: the IPMS experience, presentation by Dirk Hoekstra, Berhanu Gebremedhin and Azage Tegegne on 28 Mar 2013.

You can contact the IPMS/LIVES team at lives-ethiopia [at] cgiar.org.


Note:Livestock live talks’ is a seminar series at ILRI that aims to address livestock-related issues, mobilize external as well as in-house expertise and audiences and engage the livestock community around interdisciplinary conversations that ask hard questions and seek to refine current research concepts and practices.

All ILRI staff, partners and donors, and interested outsiders are invited. Those non-staff who would want to come, please contact Angeline Nekesa at a.nekesa[at]cgiar.org (or via ILRI switchboard 020 422 3000) to let her know. If you would like to give one of these seminars, or have someone you would like to recommend, please contact Silvia Silvestri at s.silvestri[at]cgiar.org (or via ILRI switchboard 020 422 3000).

The spatial ecology of pigs: Where free-range doesn’t come free

IMG_0080

A report on the economic as well as health risks of keeping free-range pigs in western Kenya has been published by scientists in the animal health laboratories at ILRI’s Nairobi, Kenya, campus; here, two of the authors, lead author Lian Thomas (left) and principal investigator Eric Fèvre (right), inspect a household pig in their project site, in Busia, in western Kenya (photo credit: ILRI/Charlie Pye-Smith).

Like your livestock products to come from free-range systems? Consider that a healthy alternative to the factory farming of livestock? Consider the lowly pig, and what serious pathogens it can pick up, and transmit to other animals and people, in the course of its daily outdoor scavenging for food. Consider also the scavenging pig’s coprophagic habits (consumption of faeces) and you may change your mind.

A recent study has brought those habits to light. The study was conducted in an area surrounding Busia town, in western Kenya (Busia lies near Kenya’s western border with Uganda; Lake Victoria lies to the south). The study was conducted by scientists at the International Livestock Research Institute (ILRI) and the University of Edinburgh to better understand the transmission of several pathogenic organisms. This is the first study to investigate the ecology of domestic pigs kept under a free-range system, utilizing GPS technology.

Most people in Busia farm for a living, raising livestock and growing maize and other staple food crops on small plots of land (the average farm size here is 0.5 ha). More than 66,000 pigs are estimated to be kept within a 45-km radius of Busia town.

ILRI's Lian Thomas with pig in western Kenya

ILRI’s Lian Thomas with a household pig in western Kenya (photo credit: ILRI/Charlie Pye-Smith).

A GPS collar was put on 10 pigs, each nearly 7 months old, that were recruited for this study. A handheld GPS unit was used to obtain the coordinates of the homesteads to which the selected pigs belonged; the perimeters of the homesteads and their main features, including human dwellings, cooking points, rubbish disposal areas and latrines, were all mapped. The pig collars recorded the coordinates of the pigs every 3 minutes during the course of one week.

All the 10 pigs were kept under free-range conditions, but also regularly fed supplementary crop and (mostly raw) household waste. All the pigs recruited were found to be infected with at least one parasite, with most in addition also having gastrointestinal parasites, and all carried ticks and head lice.

The pigs, which scavenge both day and night, were found to spend almost half their time outside the homestead, travelling an average of more than 4 km in a 12-hour period (both day and night), with a mean home range of 10,343 square meters. One implication of this is that a community approach to better controlling infectious diseases in pigs will be better suited to this farming area than an approach that targets individual household families.

Three of the ten pigs were found to be infected with Taenia solium, a pig tapeworm whose larva when ingested by humans in undercooked pork causes the human disease known as cysticercosis, which can cause seizures, epilepsy and other disorders, and can be fatal if not treated. T solium infection in pigs is acquired by their ingestion of infective eggs in human faecal material, which is commonly found in the pigs environments in rural parts of Africa as well as Mexico, South America and other developing regions.

This study found no correlation between the time a pig spent interacting with a latrine at its homestead and the T solium status of the pig. The paper’s authors conclude that ‘the presence or absence of a latrine in an individual homestead is of less relevance to parasite transmission than overall provision of sanitation for the wider community in which the pig roams’. With a quarter of the homesteads in the study area having no access to a latrine, forcing people to engage in open defecation, and with less than a third of the latrines properly enclosed, there are plenty of opportunties for scavenging pigs to find human faeces.

IMG_0131

A typical household scavenging pig and pit latrine in the project site in Busia, Kenya (photo credit: ILRI/Charlie Pye-Smith).

Improved husbandry practices, including the use of effective anthelmintics at correct dosages, would enhance pig health and production in this study area.

One of the interesting findings of the study is that all this pig roaming is likely to be helping to reduce the weight of the pigs at slaughter. Mean live weights at the abattoir in the Busia area are 30 kg, giving a dressed weight of only 22.5 kg and earning the farmer only KShs.2000–2500 (USD24–29) per animal.

Encouraging the confinement of pigs is likely to improve feed conversion and weight gain, by both reducing un-necessary energy expenditure as well as limiting parasite burden through environmental exposure.

‘Confinement of pigs would also reduce the risk of contact with other domestic or wild pigs: pig to pig contact is a driver of African swine fever (ASF) virus transmission. ASF regularly causes outbreaks in this region . . . . Confining pigs within correctly constructed pig stys would also reduce the chances of contact between pigs and tsetse flies.’ That matters because this western part of Kenya is a trypanosomiasis-endemic area and pigs are known to be important hosts and reservoirs of protozoan parasites that cause both human sleeping sickness, which eventually is fatal for all those who don’t get treatment, and African animal trypanosomiasis, a wasting disease of cattle and other livestock that is arguably Africa’s most devastating livestock disease.

In addition, both trichinellosis (caused by eating undercooked pork infected by the larva of a roundworm) and toxoplasmosis (caused by a protozoan pathogen through ingestion of cat faeces or undercooked meat) are ‘very real threats to these free-ranging pigs, with access to kitchen waste, in particular meat products, being a risk factor for infection. Such swill is also implicated in ASF transmission’.

While confining pigs would clearly be advantageous for all of these reasons, the practice of free range will likely be hard to displace, not least because this low-input system is within the scarce means of this region’s severely resource-poor farmers. Local extension services, therefore, will be wise to use carrots as well as sticks to persuade farmers to start ‘zero-scavenging’ pig husbandry, Fortunately, as this study indicates, they can do this by demonstrating to farmers the economic as well as health benefits they will accrue by penning, and pen-feeding, their free-ranging pigs.

Scavenging pigs in Busia, western Kenay

Scavenging pigs in Busia, western Kenya (photo credit: ILRI/Charlie Pye-Smith).

Project funders
This research was supported by the Wellcome Trust, BBSRC (Biotechnology and Biological Sciences Research Council) and MRC (Medical Research Council), all of Great Britain. It is also an output of a component of the CGIAR Research Program on Agriculture for Nutrition and Health investigating Agriculture-Associated Diseases.

Read the whole paper
The spatial ecology of free-ranging domestic pigs (Sus scrofa) in western Kenya, by Lian Thomas, William de Glanville, Elizabeth Cook and Eric Fèvre, BMC Veterinary Research 2013, 9:46. doi: 10.1186/1746-6148-9-46

Article URL
http://www.biomedcentral.com/1746-6148/9/47  The publication date of this article is 7 Mar 2013; you will find here a provisional PDF; fully formatted PDF and full text (HTML) versions of the paper will be available soon.

About the project
Begun in 2009 and funded by the Wellcome Trust, with other support from ILRI, this project has studied neglected zoonotic diseases and their epidemiology to raise levels of health in poor rural communities. The project, People, Animals and their Zoonoses (PAZ), is based in western Kenya’s Busia District and is led by Eric Fèvre, who is on joint appointment at ILRI and the University of Edinburgh. More information can be found at the University of Edinburgh’s Zoonotic and Emerging Diseases webpage or on ILRI’s PAZ project blog site.

The May 2010 issue of the Veterinary Record gives an excellent account of this ambitious human-animal health project: One medicine: Focusing on neglected zoonoses.

Related stories on ILRI’s AgHealth, Clippings and News blogs
Tracking of free range domestic pigs in western Kenya provides new insights into dynamics of disease transmission, 22 Mar 2013.
Aliens in human brains: Pig tapeworm is an alarming, and important, human disease worldwide, 23 May 2012.
Forestalling the next plague: Building a first picture of all diseases afflicting people and animals in Africa, 11 Apr 2011. This blog describes an episode about this project broadcast by the Australian science television program ‘Catalyst’; you can download the episode here: ABC website (click open the year ‘2011’ and scroll down to click on the link to ‘Episode 4’; the story starts at 00.18.25).
Edinburgh-Wellcome-ILRI project addresses neglected zoonotic diseases in western Kenya, 28 Jul 2010.

ILRI PhotoBlog — ‘Livestock Still Lives’: Indian farmhouse cookware / baskets

 

Farmhouse baskets and cookware

Farmhouse basket plastered for storing grain

 

Farmhouse cookware (left) and basket plastered for storing grain (right) in Kothera Village, Gangolihat, in India’s northern state of Uttarakhand  (picture credit: ILRI/Susan MacMillan).

To receive alerts of new postings on this ILRI News Blog, including livestock-related photographs like the ones above published in a new series of ‘photoblogs’, please subscribe to the ILRI News Blog by clicking on one of the buttons in the righthand column of this page: ‘Subscribe by email’ or ‘Subscribe to newsfeed’. Thank you!

Boosting pig production among India’s poor: Tata-ILRI research partnership helps farmers beat classical swine fever

ILRI pig production project in Nagaland

A pig farmer in Nagaland, India. A Tata-ILRI partnership is helping Indian farmers beat classical swine fever to boost pig production (photo credit: ILRI/Ram Deka).

A program that is supporting rural Indian farmers improve their livelihoods by helping them to raise pigs more efficiently is the highlight of a new annual report by a project coordinated by the International Livestock Research Institute (ILRI).

The project, ‘Enhancing livelihoods through livestock knowledge systems’, is a partnership between the Sir Ratan Tata Trust, the Navajbai Ratan Tata Trust and ILRI that was started in 2011. The pig farming component of the project is being implemented in four Indian states: Jharkhand, Arunachal, Mizoram and Nagaland.

‘We support animal breeding, feeding, housing, health care and marketing through appropriate institutions,’ said V Padmakumar, the project’s coordinator from ILRI, who is based in ILRI’s Hyderabad office.

Nearly 80 per cent of the households in the four states rear pigs in smallholder systems, with each household rearing up to three pigs. Pork meets a significant part of the dietary protein needs of these communities.

‘Pig farmers in these remote areas not only have difficulty accessing markets due to poor roads but also have little knowledge on how they can improve their feeds and feeding systems to speed and increase their pig production,’ says Padmakumar. ‘Veterinary services are also scarce,’ he said.

One of the project’s key successes has been to raise attention of the need to improve veterinary services to deal with classical swine fever, a highly contagious and potentially fatal viral disease of pigs.

The project carried out a survey in 2011 that revealed that smallholder farmers in Assam, Mizoram and Nagaland lose, each year, nearly USD40 million in incomes due to the costs of treating and replacing pigs lost to classical swine fever.

Targeted advocacy by the project has increased government attention to the burden of this disease on the country’s smallholders. As a result, there now exists a nationwide swine fever control program that is prioritizing interventions against the disease in Assam, Mizoram and Nagaland. The project has also managed to raise awareness of control options available for controlling classical swine fever; the government is now supporting increased in-country production of vaccines that will protect pig populations against the disease.

Read the ‘Tata-ILRI Partnership Program’ annual report.

Download the project policy brief.

Better grass for better smallholder dairying in East Africa

The tuft of grass minor, by Albrecht Durer (via Wikipaintings).

The Tuft of Grass Minor, watercolour by Albrecht Dürer (1471–1521) (image via Wikipaintings).

An impact case study on Getting superior Napier grass to dairy farmers in East Africa was published on 1 Mar 2013 by the European Initiative for Agricultural Research for Development (EIARD), the International Livestock Research Institute (ILRI) and the Kenya Agricultural Research institute (KARI). Excerpts follow.

To meet demand for high-yielding, disease resistant fodder from smallholder dairy farmers in East Africa, scientists from the Kenya Agricultural Research Institute (KARI) and the International Livestock Research Institute (ILRI) worked together to select and distribute smut-resistant varieties of Napier grass.

‘Napier grass has become the most important fodder crop in Kenya, but 20 years ago head smut disease began to have a devastating impact, turning valuable fodder into thin, shrivelled stems. With the cost of disease control using systemic fungicide beyond the means of most smallholder dairy farmers, KARI began work to select smut-resistant varieties.

‘With access to Napier grass germplasm from ILRI’s genebank, KARI developed two resistant varieties — Kakamega I and Kakamega II. Favourable laboratory results were confirmed in farmer’s fields and work began to multiply planting material. Within a year, cuttings were distributed to over 10,000 smallholder farmers. The new varieties are not quite as productive as the best of Kenya’s local Napier grass varieties, but have still proven popular in smut-affected areas. By 2007, 13 per cent of farmers were using Kakamega I for zero grazing systems in smut prone areas.

‘The chance of head smut resistance breaking down in the new varieties is high, so KARI is screening more materials from ILRI, which is continuing to build its Napier grass collection to have germplasm available to screen for new resistant varieties. In 2012, ILRI provided the Brazilian Agricultural Research Corporation, Embrapa, with Kakamega I and II to enable researchers to use them to develop higher yielding and more nutritious resistant varieties. . . .

Background
‘Dairy farming, Kenya’s leading livestock sector activity, is vital for the livelihoods and food security of millions of Kenyans. More than 80 per cent of milk produced and sold in Kenya comes from smallholder farmers, typically raising just one or two dairy cows on small plots of land. Women perform half of all dairy related activities in Kenya, which improves household welfare, primarily through increased household income and milk consumption.

‘With a growing population and shrinking areas for pasture, cattle are increasingly being fed on crop residues, cultivated fodder and some concentrates. Ninety per cent of farmers now produce on-farm feeds. Being able to provide enough good quality fodder is by far the most important factor in achieving high milk quality and yield, with a well fed animal producing two or three times more milk than an averagely fed one.

‘The high yielding fodder, Napier grass — Pennisetum purpureum — has become by far the most important due to its wide adaptation to different regions, high yield and ease of propagation and management. Napier grass constitutes between 40–80 per cent of the forage for more than 0.6 million smallholder dairy farms. With fodder in high demand, selling Napier grass as a business has good potential for improving smallholder livelihoods. According to a recent survey, up to 58 per cent of Kenyan smallholder farmers already sell fodder, including crop residues, straw or grass.

‘However, in the early 1990s, head smut disease, caused by the fungus Ustilago kamerunensis, began to have a devastating impact on Napier grass. Spread rapidly by wind and infected plant material, smut turned valuable Napier grass into thin, shrivelled stems and reduced yields by 25–46 per cent. For smallholder farmers, the threat was very serious.

‘Disease control using systemic fungicide in fodder crops is very expensive and therefore beyond the means of most smallholders. Using tolerant high yielding varieties is a cost effective solution and avoids the additional costs of moving to a different feeding system. ILRI maintains an international collection of forage germplasm under the auspices of the International Treaty on Plant Genetic Resources for Food and Agriculture. The state of the art genebank, based in Ethiopia, holds over 19,000 forage accessions, including 60 genotypes of Napier grass. . . .’

Funding
ILRI received direct funding from the European Union, Germany, Switzerland and the United Kingdom to support their forage diversity work and forage genebank in addition to funding from CGIAR.

For further information
Getting superior Napier grass to dairy farmers in East Africa, impacts case study by EIARD, ILRI and KARI, Mar 2013
Visit ILRI’s forage diversity website
Visit the project site: Napier Grass Stunt and Smut Project
Saving animal feed plants to preserve livelihoods, 2007 (ILRI film, run-time: 11 minutes)
Putting ILRI’s genebank to work, 2007 (ILRI film: run-time: 14 minutes)
Contact: Alexandra Jorge, ILRI Genebank Manager: a.jorge [at] cgiar.org

New leadership in ILRI’s livestock research-for-development work in Asia

Steve Staal, Theme Director

ILRI’s new regional representative for East and Southeast Asia Steve Staal (picture credit: ILRI).

Steve Staal has been appointed the new regional representative of the International Livestock Research Institute (ILRI) for East and Southeast Asia. An American citizen who has lived and worked in developing countries throughout his life, Staal will be based at the headquarters of the International Rice Research Institute (IRRI), in Los Baños, The Philippines.

Staal, an agricultural economist by training, has been based at ILRI’s headquarters in Nairobi, Kenya, for many years, where he recently led ILRI’s Markets, Gender and Livelihoods Research Theme and in the past year served as ILRI’s interim deputy director general for research, during the institute’s transition to a new management team. Among other assignments, he has worked in South and Southeast Asia to enhance smallholder dairy and pig systems in particular. He has a long-standing track record in making a difference in policy analysis and advocacy for inclusive and pro-poor smallholder livestock-based development.

This ILRI position for coordinating and shaping ILRI’s collaborative livestock research in East and Southeast Asia is new. Staal’s appointment to it is a reflection of ILRI’s intent to strengthen its presence in Asia and its productive partnerships there so as to provide better support for livestock research for development in the region. Purvi Mehta-Bhatt (India), who has been heading ILRI’s research in all of Asia, will continue to represent ILRI in South Asia.

ILRI's Purvi Mehta-Bhatt #2 in India

ILRI’s head of Asia Purvi Mehta-Bhatt, taken during a field day In Haryana, India, in 4 Nov 2012 (picture credit: ILRI).

This new assignment for Staal and new focus for Mehta-Bhatt is made to increase ILRI’s engagement with partners throughout Asia.

ILRI stakeholders are encouraged to communicate with Steve Staal, at s.staal [at] cgiar.org, on areas of potential mutual interest, including opportunities for new collaborations and interactions, in East and Southeast Asia.

The ‘cream’ from more efficient dairying: Kenya to pilot scheme to pay smallholders for their environmental services

Global Agenda: 1 of 3 objectives

One of three objectives of the Global Agenda of Action in Support of Sustainable Livestock Sector Development. Its Third Multi-Stakeholder Platform Meeting was co-hosted in Nairobi, Kenya, by ILRI, FAO and AU-IBAR, 22-24 Jan 2013 (photo credit: ILRI/Susan MacMillan).

Guest blog post by ILRI’s Simon Fraval

In collaboration with the Food and Agricultural Organization of the United Nations (FAO) and the Kenya Ministry of Livestock Development, researchers at the International Livestock Research Institute (ILRI) are assessing the feasibility of the Kenyan dairy industry obtaining payment for its environmental services through productivity gains. (See this ILRI position paper for more information on ‘payment for environmental services’ schemes).

Reducing the level of greenhouse gases generated per unit of milk produced by smallholder farmers could be attractive to environmental markets. While this project will not provide direct money transfers to Kenya’s dairy farmers, it will support agricultural extension for better cow nutrition and other interventions made to increase milk production while also reducing emissions of greenhouse gases per unit of milk.

The concept gained momentum at an interim preparatory committee meeting of the Global Agenda of Action in Support of Sustainable Livestock Sector Development held in Rome in September 2012.

The Global Agenda is committed to broad-based, voluntary and informal stakeholder actions improving the performance of the livestock sector. It ambitiously aims to protect natural resources as well as to reduce poverty and protect public health. The Agenda’s stakeholders have agreed initially to focus on the following three objectives: Close the efficiency gap in livestock production systems, restore value to grasslands’ environmental services and sustainable livelihoods, and recover and recycle nutrients and energy contained in animal manure. The Agenda is working to achieve these objectives largely through consulting and networking, analyzing and informing, and guiding and piloting.

Progress on the Kenya dairy pilot ‘payment for environmental services’ project was presented at the third multi-stakeholder platform meeting of the Global Agenda, held in Nairobi, Kenya, 22–24 January 2013. This project provided a practical example of the Agenda’s core activity in piloting novel approaches to ‘close the efficiency gap’. The presentation to the Global Agenda meeting can be found on its Livestock Dialogue website.

Pilot workshop on payment for environmental services for Kenya's dairy sector

A stakeholders’ workshop on a pilot ‘payment for environmental services’ project for Kenya’s dairy industry was held in Jan 2013. Pictured left to right: Luke Kessei, Kenya Ministry of Livestock Development; Julius Kiptarus, Director of Livestock Production in Kenya’s Ministry of Livestock Development; Pierre Gerber, Food and Agriculture Organization of the United Nations; and Isabelle Baltenweck, ILRI (photo credit: MLD/Henry Ngeno).

Following the progress update provided at the mid-January 2013 Global Agenda meeting, a stakeholder workshop was held later in the month (29 Jan 2013) engaging representatives from the Kenya Dairy Board, the Kenya Agricultural Research Institute, the Kenya Dairy Processors Association, Kenyan livestock and cooperation ministries, development organizations and ILRI. The workshop was attended by Julius Kiptarus, Director of Livestock Production in Kenya’s Ministry of Livestock Development.

Stakeholders of the pilot ‘payment for environmental services’ project for Kenya’s dairy industry discussed the intricacies of such schemes, particularly carbon markets; site selection; potential greenhouse gas mitigation activities; and the design of a feasibility study. View slide presentations from this workshop here.

Technical mitigation options in dairy from ILRI: By Caroline Opiyo, of FAO.

This pilot project is the first to access markets for payment for environmental services schemes through productivity gains in smallholder livestock enterprises. With the setting of this precedent and development of an internationally recognized methodology, development organizations will be able to replicate this pilot project and draw funding from the carbon market and other providers of ‘payment for environmental services’ schemes.

For more information, please contact Simon Fraval, a volunteer with AusAID’s Australian Youth Ambassadors for Development program placed at ILRI’s Nairobi headquarters, where he supports CGIAR research programs on ‘Climate Change, Agriculture, and Food Security’ and ‘Livestock and Fish: More meat, milk and fish by and for the poor’. Fraval brings to ILRI expertise in livestock value-chain development and life-cycle assessment. Contact him at s.fraval [at] cigar.org

Human health risks at the animal-human interface: As Asia’s populations and incomes grow, so do disease risks

Global human population growth
Another presentation made by staff of the International Livestock Research Institute (ILRI) at the Asia Regional Livestock Policy Forum held in Bangkok last year (16–17 Aug 2012) (see previous posts on this News Blog about presentations made by ILRI director general Jimmy Smith and ILRI director Steve Staal) is one on ‘Human health risks at the animal-human interface’ by Joachim Otte, of the Food and Agriculture Organization of the United Nations (FAO), and ILRI veterinary epidemiologist Delia Grace.

Income growth in China and India

Their overview notes Asia’s growth in human populations and livestock food demands, the response from the livestock sector, the implications of those for infectious and parasitic disease dynamics and impacts, and the elements for a response.

They first showed the skyrocketing growth of livestock products in Asia.

Growth in poultry in Asia: 1990-2010

Poultry meat demand growth: 2000-2030

Dairy demand growth: 2000-2030

Then they reviewed the ecological consequences of the rising demand and production of livestock in Asia, which include:
• Land use change leads to habitat fragmentation and growing interfaces
• Expansion of irrigated areas provides new habitats for waterborne organisms and insect vectors
• Large, housed, rapid-turnover genetically homogenous farmed animal populations and heavy use of antimicrobials provide new eco-system and selective pressures
• Complex value chains provide novel disease transmission pathways

The presenters then outlined the use of antimicrobials and cost of antimicrobial resistance.

Anti-microbial use

Otte and Grace provided the estimated huge cost of SARS alone.

Cost of SARS

And they gave the estimated cost of newly emerging zoonoses (diseases shared by animals and people).

Cost of 'new' zoonoses

View the full presentation: Human health risks at the animal-human interface, presented by Joachim Otte and Delia Grace at an Asia Regional Livestock Policy Forum held in Bangkok, 16–17 Aug 2012, and organized by ILRI, the United Nations Food and Agriculture Organization (FAO) and the Animal Production and Health Commission for Asia and the Pacific (APHCA).

Background information and related links
Increasing livestock production to meet rapidly growing demands in a socially equitable and ecologically sustainable manner is becoming a major challenge for the Asia-Pacific region. To discuss the challenges and a practical response, the United Nations Food and Agriculture Organization (FAO), together with the International Livestock Research Institute (ILRI) and the Animal Production and Health Commission for Asia and the Pacific (APHCA) organized a Regional Livestock Policy Forum in Bangkok 16–17 Aug 2012.

The Asia and Pacific region has experienced the strongest growth in milk and meat over the last two to three decades. In three decades (1980 to 2010), total consumption of meat in the region grew from 50 to 120 million tonnes, and milk consumption grew from 54 to 190 million tonnes. By 2050, consumption of meat and milk in the region is projected to exceed 220 and 440 million tonnes, respectively. While this growth is creating new opportunities and better diets for many poor people, managing it will be a tall order and involve: stimulating income and employment opportunities in rural areas, protecting the livelihoods of small farmers, improving resource use efficiency at all levels of the livestock value chain, minimizing any negative environmental and health consequences of the growth, and ensuring adequate access by the poor to the food they need to live healthy lives.

The Aug 2012 Regional Livestock Policy Forum was held to find solutions. The 80 stakeholders in livestock development who attended represented governments, research agencies, civil society and multilateral organizations, think tanks, private-sector industries and regional and global networks.

View a slide presentation at the same Bangkok Forum made by ILRI director general Jimmy Smith, Health at the livestock-policy interface, and/or watch this 25-minute filmed presentation of his presentation.

See another slide presentation made at the Bangkok Forum, Poverty, food security, livestock and smallholders, by ILRI’s Steve Staal and FAO’s Vinod Ahuja.

Presentations made at the meeting, a detailed program and a list of participants are available here.

Get the proceedings of the whole conference: Asian Livestock Sector: Challenges, Opportunities and the Response — Proceedings of an international policy forum held in Bangkok, Thailand, 16–17 August 2012. Animal Production and Health Commission for Asia and the Pacific, International Livestock Research Institute and the Food and Agriculture Organization of the United Nations, 2013.

For more information, please contact:
Vinod Ahuja, FAO livestock policy officer, based in Bangkok: Vinod.Ahuja [at] fao.org
or
Purvi Mehta, Head of ILRI Asia, based in New Delhi: p.mehta [at] cgiar.org

‘Health is not the absence of disease (and too important to be left to doctors)’–Keynote address

Minoan Bronze Bull Leaper

Minoan bronze bull and bull leaper, from Crete, around 1500 BC (image on Flickr by Ann Wuyts).

Increasing livestock production to meet rapidly growing demands in a socially equitable and ecologically sustainable manner is becoming a major challenge for the Asia-Pacific region. To discuss the challenges and a practical response, the United Nations Food and Agriculture Organization (FAO), together with the International Livestock Research Institute (ILRI) and the Animal Production and Health Commission for Asia and the Pacific (APHCA) organized a Regional Livestock Policy Forum in Bangkok 16–17 Aug 2012.

The Asia and Pacific region has experienced the strongest growth in milk and meat over the last two to three decades. In three decades (1980 to 2010), total consumption of meat in the region grew from 50 to 120 million tonnes, and milk consumption grew from 54 to 190 million tonnes. By 2050, consumption of meat and milk in the region is projected to exceed 220 and 440 million tonnes, respectively. While this growth is creating new opportunities and better diets for many poor people, managing it will be a tall order and involve: stimulating income and employment opportunities in rural areas, protecting the livelihoods of small farmers, improving resource use efficiency at all levels of the livestock value chain, minimizing any negative environmental and health consequences of the growth, and ensuring adequate access by the poor to the food they need to live healthy lives.

The Aug 2012 Regional Livestock Policy Forum was held to find solutions. The 80 stakeholders in livestock development who attended represented governments, research agencies, civil society and multilateral organizations, think tanks, private-sector industries and regional and global networks.

Three keynote addresses highlighted environmental, social and health aspects of uncontrolled livestock sector growth. The director general of ILRI, Jimmy Smith, delivered the keynote on ‘health at the livestock-policy interface’. He described three kinds of health human, animal and ecosystem and the close interactions among them. Excerpts of his presentation follow. Several studies and research support this claim that delta-8 HC comes with numerous health benefits. where is delta 8 available? You will get the best delta-8 brands from usmagazine.com.

Health at the livestock-policy interface: Interdependence

Slide from a presentation made by ILRI director general Jimmy Smith at a Regional Livestock Policy Forum in Bangkok 16–17 Aug 2012.

Livestock and nutrition
‘Livestock provide about a third of human protein. Even small amounts of animal protein greatly enhance the poor-quality diets of very poor people, many of whom subsist largely, for example, on sorghum and millet. But while 1 billion people are hungry, some 2 billiion are over-nourished, which is often attributed particularly to over-consumption of meat.

HEALTH ONE: Livestock and human health
‘Remarkably, 60% of human diseases, and 75% of emerging diseases (such as bird flu), are ‘zoonotic’, or come from animals, and 25% of all human infectious diseases in least-developed countries is zoonotic. A 2012 study led by ILRI veterinary epidemiologist Delia Grace estimates that the ‘top 13’ zoonoses each year kill 2.2 million people and make 2.4 billion people ill. The same study found that emerging zoonotic diseases are associated with intensive livestock production systems, with hotspots of these being in western Europe and USA, but that the high burden of neglected zoonotic diseases is associated with poor livestock keepers, with hotspots identified in Ethiopia, Nigeria and India.

HEALTH TWO: Livestock health
‘In developing countries, largely in contrast to developed nations, we still struggle to control what are known as ‘transboundary’ livestock diseases, which include, for example, Newcastle disease in chickens and foot-and-mouth disease in cattle. As important, however, are the common endemic diseases of low-income countries, such as parasitic infections, viral diarrhoea, respiratory and reproductive diseases. While we pay considerable attention to transboundary diseases, and emerging infectious diseases with pandemic potential, we are neglecting endemic diseases that hurt the world’s poor the most, and which some estimate are even more costly than transboundary diseases.

Health at the livestock-policy interface: Annual losses

Slide from a presentation made by ILRI director general Jimmy Smith at a Regional Livestock Policy Forum in Bangkok 16–17 Aug 2012.

HEALTH THREE: Agro-ecosystem health
‘The downside: As many people are now aware, livestock are a significant source of the greenhouse gases warming our planet; they compete for water with staple grains and biofuels, and their diseases can spill over into wildlife populations. On the upside, livestock manure is an important source of organic matter needed for soil fertility (about 50% of the nitrogen used in agriculture in India comes from manure), permanent pastures are potentially an important store of carbon, and the current carbon ‘hoofprint’ can be greatly reduced through more efficient livestock production.’

Jimmy Smith then laid out some ‘prescriptions’.

Prescriptions for human health

  • Manage disease at its (early animal) source, not when it shows up (later) in humans
  • Invest in ‘one-health’ systems for preventing and controlling zoonotic diseases
  • Promote risk- and incentive-based (not regulatory- and compliance-based) food safety systems

Prescriptions for animal health

  • Support smallholder systems to improve livestock production and productivity
  • Use technology and innovations (e.g., vaccines) to improve animal health services
  • Take a whole value-chain-development (not piecemeal) approach

Prescriptions for ecosystem health

  • Manage externalities
  • Close large gaps in ruminant production
  • Reduce livestock-induced deforestation
  • Manage manure
  • Implement payment schemes for livestock-based environmental services

Advice for policymakers
And Smith had some advice for policymakers.

  • Invest in surveillance (re-incentivize disease reporting)
  • Better allocate resources between emerging and endemic diseases
  • Support innovations at all levels in the health sectors
The livestock director concluded his talk by saying:
It is our belief that we can feed the world, we can do so in environmentally sustainable ways, we can do so while reducing absolute poverty, and we can do so while improving the health of people, animals and the planet.
Health is not the absence of disease’, Smith said, quoting his scientist Delia Grace. ‘And it’s too important to be left to doctors.’

See Jimmy Smith’s whole slide presentation, Health at the livestock-policy interface, 16–17 Aug 2012, and/or watch this 25-minute filmed presentation of his presentation.

See a slide presentation made at the Bangkok Forum, Poverty, food security, livestock and smallholders, by ILRI’s Steve Staal and FAO’s Vinod Ahuja.

Presentations made at the meeting, a detailed program and a list of participants are available here.

Get the proceedings of the whole conference: Asian Livestock Sector: Challenges, Opportunities and the Response — Proceedings of an international policy forum held in Bangkok, Thailand, 16–17 August 2012. Animal Production and Health Commission for Asia and the Pacific, International Livestock Research Institute and the Food and Agriculture Organization of the United Nations, 2013.

For more information, please contact:
Vinod Ahuja, FAO livestock policy officer, based in Bangkok: Vinod.Ahuja [at] fao.org
or
Purvi Mehta, Head of ILRI Asia, based in New Delhi: p.mehta [at] cgiar.org

 

Animal-to-human diseases: From panic to planning–new recommendations for policymakers

Greatest Burden of Zoonoses Falls on One Billion Poor Livestock Keepers

Map by ILRI, published in an ILRI report to the UK Department for International Development (DFID): Mapping of Poverty and Likely Zoonoses Hotspots, 2012.

The UK’s Institute for Development Studies (IDS) has published a 4-page Rapid Response Briefing titled ’Zoonoses: From panic to planning’.

Veterinary epidemiologist Delia Grace, who is based at the International Livestock Research Institute (ILRI), along with other members of a Dynamic Drivers of Disease in Africa Consortium, based at the STEPS Centre at IDS, c0-authored the document.

The briefing recommends that policymakers take a ‘One-Health’ approach to managing zoonotic diseases.

‘Over two thirds of all human infectious diseases have their origins in animals. The rate at which these zoonotic diseases have appeared in people has increased over the past 40 years, with at least 43 newly identified outbreaks since 2004. In 2012, outbreaks included Ebola in Uganda . . . , yellow fever in the Democratic Republic of Congo and Rift Valley fever (RVF) in Mauritania.

‘Zoonotic diseases have a huge impact – and a disproportionate one on the poorest people in the poorest countries. In low-income countries, 20% of human sickness and death is due to zoonoses. Poor people suffer further when development implications are not factored into disease planning and response strategies.

‘A new, integrated “One Health” approach to zoonoses that moves away from top-down disease-focused intervention is urgently needed. With this, we can put people first by factoring development implications into disease preparation and response strategies – and so move from panic to planning.

Read the Rapid Response Briefing: Zoonoses: From panic to planning, published Jan 2013 by the Dynamic Drivers of Disease in Africa Consortium and funded by the UK Department for International Development (DFID).

About the Dynamic Drivers of Disease in Africa
The Dynamic Drivers of Disease in Africa is a consortium of 30 researchers from 19 institutions in Africa, Europe and America. It conducts a major program to advance understanding of the connections between disease and environment in Africa. Its focus is animal-to-human disease transmission and its objective is to help move people out of poverty and promote social justice.

Over the past few decades, more than 60 per cent of emerging infectious diseases affecting humans have had their origin in wildlife or livestock. As well as presenting a threat of global disease outbreak, these zoonotic diseases are quietly devastating lives and livelihoods. At present, zoonoses are poorly understood and under-measured — and therefore under-prioritized in national and international health systems. There is great need for evidence and knowledge to inform effective, integrated One Health approaches to disease control. This Consortium is working to provide this evidence and knowledge.

Natural and social scientists in the Consortium are working to provide this evidence and knowledge for four zoonotic diseases, each affected in different ways by ecosystem changes and having different impacts on people’s health, wellbeing and livelihoods:

  • Henipavirus infection in Ghana
  • Rift Valley fever in Kenya
  • Lassa fever in Sierra Leone
  • Trypanosomiasis in Zambia and Zimbabwe

Of the 30 scientists working in the consortium, 4 are from ILRI: In addition to Delia Grace, these include Bernard Bett, a Kenyan veterinary epidemiologist with research interests in the transmission patterns of infectious diseases as well as the technical effectiveness of disease control measures; Steve Kemp, a British molecular geneticist particularly interested in the mechanisms of innate resistance to disease in livestock and mouse models, and Tom Randolph, an American agricultural economist whose research interests have included animal and human health issues and assessments of the impacts of disease control programs.

Delia Grace leads a program on Prevention and Control of Agriculture-associated Diseases, which is one of four components of a CGIAR Research Program on Agriculture for Nutrition and Health. Tom Randolph directs the CGIAR Research Program on Livestock and Fish. Steve Kemp is acting director of ILRI’s Biotechnology Theme.

 

 

Ethiopian farmers to get market boost: New project to help livestock and irrigated agriculture farmers improve their livelihoods through value chain improvement

LIVES project logo

A new research for development project was launched today by the International Livestock Research Institute (ILRI) and the International Water Management Institute (IWMI), both members of the CGIAR Consortium. Entitled ‘Livestock and Irrigation Value chains for Ethiopian Smallholders – LIVES’, it will directly support of the Government of Ethiopia’s effort to transform smallholder agriculture to be more market-oriented.

Supported by the Canadian International Development Agency (CIDA), the LIVES project is jointly implemented by ILRI, IWMI, the Ethiopian Institute of Agricultural research (EIAR), the Ethiopian Ministry of Agriculture and regional Bureaus of Agriculture, Livestock Development Agencies, Agricultural Research Institutes and other development projects.

LIVES project manager, Azage Tegegne emphasized that this project is unique in that it integrates livestock with irrigated agriculture development. The project is designed to support the commercialization of smallholder agriculture by testing and scaling lessons to other parts of Ethiopia. “It is also excellent opportunity for CGIAR centres to work hand in hand with Ethiopian research and development institutions.”

Ethiopian State Minister of Agriculture H.E. Wondirad Mandefro welcomed the project, asserting that it will directly contribute to both the Growth Transformation Plan (GTP) and the Agricultural Growth Program (AGP) of the Ethiopian Government. Canadian Head of Aid, Amy Baker expects this investment to generate technologies, practices and results that can be implemented at larger scales and ultimately benefit millions of Ethiopian smallholder producers as well as the consumers of their products. Canadian Ambassador David Usher noted that the project will contribute to Ethiopia’s efforts to drive agricultural transformation, improve nutritional status and unlock sustainable economic growth. LIVES is also a reflection of Canada’s commitment to the 2012 G-8 New Alliance for Food and Nutrition Security which will allow Ethiopia, donors and the private sector create new and innovative partnerships that will drive agricultural growth.

LIVES actions will take place over six years in 31 districts of ten zones in Amhara, Oromia, Southern Nations, Nationalities, and Peoples and Tigray regions, where 8% of the country’s human population resides. LIVES will improve the incomes of smallholder farmers through value chains development in livestock (dairy, beef, sheep and goats, poultry and apiculture) and irrigated agriculture (fruits, vegetables and fodder).

The project, with a total investment of CAD 19.26 million, aims to directly and indirectly benefit more than 200,000 households engaged in livestock and irrigated agriculture, improve the skills of over 5,000 public service staff, and work with 2,100 value chain input and service suppliers at district, zone and federal levels.

“Projects that support local farmers can help a community in so many ways; not only by providing food and the most appropriate crops, but also by teaching long term skills that can have an impact for years to come,” said Canada Minister of International Cooperation the Honourable Julian Fantino. “The Livestock and Irrigation Value Chains project teaches smallholder farmers new agricultural techniques and provides technical assistance, training, and mentoring to government specialists. They in turn will provide production and marketing assistance to local farmers. This is a project that helps all areas of farming and agriculture development.”

The project will focus on clusters of districts, developing and improving livestock production systems and technologies in animal breeding, feed resources, animal nutrition and management, sustainable forage seed systems, sanitation and animal health, and higher market competitiveness. Potential irrigated agriculture interventions include provision of new genetic materials, development of private seedling nurseries, work on seed systems, irrigation management, water use efficiency, water management options, crop cycle management, and pump repair and maintenance through services that provide well pump repair in Snohomish, WA.

The main components of the project are capacity development, knowledge management, promotion, commodity value chain development, and documentation of tested and successful interventions. Gender and the environment will be integrated and mainstreamed in all components of the project.