World’s first livestock insurance supports African herders

Drought is the greatest hazard facing livestock herders in Kenya. Their livelihoods have been greatly affected, and often devasted, by animal losses as a result of severe droughts, especially in the past 10 years.

In this 12-minute film, Andrew Mude, an economist working with the International Livestock Research Institute (ILRI), shares the story of a pilot project introduced in Marsabit District of northern Kenya in 2007 to provide a new and innovative livestock insurance scheme to Kenyan herders. The project is a result of joint research and collaboration by partners from different sectors, including private insurance companies, working in the region as well as institutions overseas.

This initiative is helping livestock keepers in some of Kenya’s most marginal areas to escape poverty and, as the film shows, has great potential to help other herding communities in Africa.

New participatory initiative to involve local communities in disease control

A new approach to disease surveillance and control aims to unite human and animal medical approaches to better control disease spread and so improve public health.

In this 10-minute film from the International Livestock Research Institute (ILRI), representatives of seven institutional members of a Participatory Epidemiology Network for Animal and Public Health (PENAPH), which includes researchers from ILRI, discuss ways of involving communities and health workers in the process of empowering local people.

The network uses participatory approaches to come up with effective ways of dealing with community challenges and encourages teamwork among farmers, veterinarians, nurses, doctors, governments and other specialists, especially in setting up effective disease surveillance systems.

Research shows bird flu still a threat to poultry production in Kenya

Chicken

Risk assessment shows Avian Influenza still a threat to poultry production in Kenya

The risk of avian flu on poultry production continues to be a threat to the livelihoods of many poor and livestock-reliant farmers in developing countries such as Kenya, researchers say.

Scientists from the International Livestock Research Institute (ILRI) and the International Food Policy Research Institute (IFPRI) have found that poultry farmers in Kenya are ‘highly susceptible to the introduction and spread of the highly pathogenic avian influenza (HPAI)’ because of the country’s location along key wild birds’ migratory routes and the absence of strong mechanisms to deal with a possible outbreak of the disease.

Like in many developing countries, poultry production is an important livelihood activity in Kenya. Most poultry is kept by small-scale farmers in non-commercial settings, who depend on income from the sale of eggs, animals and meat to sustain their livelihoods.

Results from a 2009 impact assessment conducted by ILRI, IFPRI and the Royal Veterinary College in London with support from the Department for International Development (DFID) on the ‘Role of Poultry in Kenyan Livelihoods and the Ex Ante Impact Assessment of HPAI on Livelihood outcomes’ show that farmers in the key poultry producing regions of the country are not adequately prepared to deal with an outbreak of avian influenza.

Though the country has not had an outbreak of avian flu, there were two scares in 2005 and 2005.  The scares led to a slowdown in the industry as farmers, in fear of making losses, reduced flock sizes by up to 40 per cent. The two scares also led to a depressed market for poultry and poultry products and lowered the prices which negatively impacted farmers. The assessment showed that farmers in Kenya are still at risk especially because the country’s human and animal health services are not adequate. Coupled with the fact that most of the poultry farming in the country is a ‘backyard poultry system’ preventing and controlling disease outbreaks would be significantly difficult.

Among others, the results of the assessment also showed, like other studies had confirmed, that poultry production is largely done by women and children to support livelihoods and that most of the poultry in Kenya is produced in the country’s western and eastern regions. Farmers in these places are most at risk of loses in the event of a HPAI outbreak. Kenyan farmers keep an average flock size of 18 birds across the country but there are significant variations across regions mostly determined by ease of access to markets. Nairobi province, for example, has large producers (though fewer in number compared to other regions) with an average of 158 birds per flock because of access to ready market for their animals.

The assessment found that ‘households with “larger” small-scale flocks as well as those located in high risk areas (Western, Nyanza and parts of Eastern provinces) are vulnerable to HPAI.  In the event of an outbreak, the disease would cause ‘significant reduction in livestock income and wealth (asset value) and total annual household income would be reduced.’

The results of this assessment were first published as ‘The role of poultry in Kenyan livelihoods and the ex ante impact assessment of HPAI on Livelihood outcomes’ by the International Food Policy Research Institute (IFPRI).  A full report of the assessment can be found in the following link http://www.ifpri.org/sites/default/files/publications/hpairb11.pdf

For more information visit www.hpai-research.net


Three ways to tackle Napier grass diseases in East Africa

An ASARECA-funded Napier grass smut and stunt resistance project held its final workshop on 2 and 3 June 2010 at the International Livestock Research Institute (ILRI), in Addis Ababa, Ethiopia. It gathered 30 participants from Kenya, Tanzania, Uganda, UK, and Ethiopia.

During the workshop, participants shared three main ways to tackle these diseases that attack an important feed for cattle: One is to identify alternative forage species. The second is to raise awareness of the disease and better management methods among farmers. The third is to control the vectors causing the diseases or to breed disease-resistant grasses.

It all started in 2007, when ASARECA – the Association for Strengthening Agricultural Research in Eastern and Central Africa, the International Livestock Research Institute, Rothamsted Research, Kenya Agriculture Research Institute, National Agricultural Research Organisation (Uganda) and the National Biological Control Programme (Tanzania) launched a three year project to examine the problems.

The project brought together scientists from national and international institutes to find ways to halt the spread of the diseases that affect Napier grass – an important feed source for dairy cattle in the region.

The project aimed to determine the extent of the disease problem in areas where smallholder dairy is important, to collect Napier grass clones that farmers select as more resistant to the diseases and to identify best management practices used by farmers to reduce the impact of the diseases.

With the vision and financial support of ASARECA, this project has characterized Napier grass clones, developed diagnostic techniques for use in the region, and formed local partnerships to share information and management practices.

During the two day meeting, participants set out different approaches to fight the disease. One is to identify other alternative forage species.

“Before we were growing Guatemala grass, says Peter Ddaki, workshop participant and farmer in Kitenga, Uganda. It was less tasty and hard to cut but we could go back to it because if this disease is not fought, we go to poverty”. “It is true violence to me”, he adds. “From my cows, I have three things: urine, milk and manure. Well, they have all reduced. My suggestion to researchers is to think about Guatemala grass or other forages in case Napier grass dies away.”

Jolly Kabirizi, senior researcher at the National Livestock Resources Research Institute (NaLIRRI) and project partner from Uganda is one of several researchers in the region looking more closely at other forages, such as the Brachiaria hybrid cv Mulato, and investigating feeding with crop residues. Jean Hanson, ILRI Forage diversity team leader, explains: “In this project we made the choice to focus on Napier grass and looked for a disease resistant variety of the same species because it is very difficult to find anything as productive as Napier and for farmers to change to other grasses for cut and carry systems. Guatemala grass does not have the same palatability as Napier grass, and Brachiara Mulato produces less biomass. We also carried on with research on Napier because its dissemination with cuttings is much easier than with the other grasses.”

Another approach is to raise awareness among farmers. Presentations showed that in the districts where the diseases were studied, over 80% of the farmers are now aware of the disease symptoms and adopt recommended best management practices. The incidence and severity of stunt especially, is really dropping (decline of 20 to 40% in Uganda and Kenya, more in Tanzania where it is an emerging disease) even though there is still a need to raise awareness to avoid spreading the disease. As Peter Ddaki puts it “don’t leave supervision of your garden to children or people who don’t know about the disease; use clean material when planting, or stunt will wipe out your entire crop.”

In Uganda, manure application seems to be the most effective control measure as it reduces Napier stunt incidence but also improves fodder yield. Similarly, in Tanzania and Kenya, a critical research area is the development of Integrated Pest Management.

A third approach is to look at the causes of the diseases and find ways to control the vectors or to breed disease-resistant grasses. Scientists from the International Centre of Insect Physiology and Ecology (ICIPE), Charles Midega and Evans Obura explained the importance of analyzing the biology of the disease and its vector. “Kenya is so far the only country where we identified a leafhopper vector (Maiestas (=Recilia) banda) transmitting Napier stunt disease”, says Evans Obura, Doctoral research fellow with ICIPE, “there could be other insects. We are at the moment working on identifying a phytoplasma (cause of the disease) resistant Napier grass cultivar and also studying the genetic diversity of Recilia banda in eastern Africa.”

But as Charles Midega pointed out: “if the resistant variety has high levels of resistance to the vector, where will the vector move to in the future? Food crops? And will food crops such as maize and millet be susceptible to phytoplasma?” This scary thought triggered numerous comments in the discussions.

On a positive note, Margaret Mulaa, senior researcher at the Kenya Agricultural Research Institute (KARI), has identified 28 clones that are not showing symptoms and appear disease resistant in the field in an area of high stunt incidence. These still need to be tested by farmers to confirm their yields and disease resistance before further distribution.

Fishbowl session at the Napier Grass diseases workshop Besides presentations, the workshop used participatory methods such as Fish Bowls and World cafes to encourage discussions. Facilitated with brio by Julius Nyangaga and Nadia Manning-Thomas, these lively sessions were sometimes new to participants and much appreciated. They particularly helped the project team interact with decision makers and regional stakeholders.

It was clear from the group discussions that the project created awareness, trained scientists, mentored graduate students, plus identified materials and set up efficient networks.

Alexandra Jorge, Coordinator of the Global Public Goods Project, commented on the progress made in the three year project: “It is amazing to see the amount of knowledge people have accumulated when you compare the first meeting I attended in 2007 and this one! I also notice the ownership and commitment participants feel about their work” and she adds “I was impressed with how much people involved did at all levels in only three years…”

In her closing remarks, Sarah Mubiru from ASARECA shared a story illustrating the power of collaboration: In her story, a man brought to God asks to see Hell and Heaven. In Hell, people have bowls of soup but spoons that are too long to drink with or eat from. In Heaven, people with the same bowls and long spoons feed each other. The first results in chaos, the second in harmony.

She said that ASARECA similarly prides itself on its partnerships, carrying out fruitful partner-based research that improves livelihoods. ASARECA funds projects that “work locally” and have regional impact through linkages and dissemination.

She concluded that this project has achieved that goal with strong national teams addressing local issues, working together across the region to support each other and using the website to make the project results available world wide.

These sentiments were reflected by ILRI Theme Director Shirley Tarawali: “The strong collaborative nature of this project will hopefully last after the end of the project”.

More:

View presentations, posters, reports and outputs from the workshop and the project

Read an article by Nadia Manning-Thomas on the knowledge sharing processes used in the workshop

Visit the project website

View photos from the workshop

Serengeti surely SHALL die if a proposed highway bisects its northern wilderness—and if its human neighbours remain poverty-stricken

Zebra and wildebeest in the Masai Mara Game Reserve

Zebra and wildebeest in Kenya’s Masai Mara Game Reserve (photo credit: ILRI/Elsworth).

The New York Times and other media are reporting this week that one of the greatest wildlife spectacles on earth—the annual migration of nearly 2 million wildebeest and zebra from the drying savannas of the Serengeti, in Tanzania, to the wetter, greener, pastures of Kenya’s adjacent Masai Mara, and back again—is threatened by a proposed new national transit road for northern Tanzania that would cut right across the migration route of these vast herds of ungulates, likely leading to the collapse of this migration and possibly the crash of this ecosystem as a whole.

Kenya’s Masai Mara is the only year-round water source in the Greater Serengeti, and thus serves as critical dry-season grazing grounds for these vast herds of big mammals.

Just one of the problems such a road would bring is a greater disease burden to people, livestock and wildlife alike. In her extensive and useful research notes to her recent article, ‘Road Kill in the Serengeti’, in the New York Times, Olivia Judson refers readers to a scientific paper written by Eric Fevre, of the Zoonotic and Emerging Diseases research group at the University of Edinburgh, now based at the International Livestock Research Institute (ILRI) in Kenya while working on a 3-year human-animal disease research project in Busia District. Fevre describes the spread of animal diseases through animal transportation in his article, ‘Animal movements and the spread of infectious diseases’ (Trends in Microbiology, 2006).

Perhaps just in time, just this month former ILRI ecologist Robin Reid, now director of the Center for Collaborative Conservation at Colorado State University, in Fort Collins, USA, began a project in Kenya that is putting radio collars on wildebeest to learn more precisely what routes the animals take in their migration. This project’s members are involving Maasai schoolchildren, who are naming the wildebeest, which they will then be able to follow. The wildebeest collars send regular tracking signals to Safaricom, which are then sent to Colorado, where the routes are posted on a web map that the schoolchildren can follow.

This year’s annual wildebeest migration has already begun. Herds are reported to have crossed the common border of Kenya/Tanzania from Northern Serengeti into Masai Mara, about 4 days ago. ‘What has been unusual about this year’s migration,’ says Paul Kirui, in the Masai Mara, ‘is that the main migration from the south arrived in the Mara early ahead of the Loita herds—the Kenyan resident herds of wildebeest—which usually migrate into the Mara from the east of the park. Normally when we start seeing them move into the park, it is a sign that the main migration from the south is on the way.’

The first population of wildebeest that Reid’s team darted and then tagged with radio collars in the Mara is the Loita group that remains resident in Kenya all year round. Or so the researchers think. The radio collars, now fixed on the first 15 wildebeest, have already started to report back and will be letting scientists, and those schoolchildren, know just where they go, and when.

Reid’s return gave ILRI cause to revisit two remarkable films about her ILRI research in the Mara. Counting in a Disappearing Land (ILRI, 11 minutes, 2007) describes Reid’s project with a Maasai community that has traditionally herded their livestock in Kenya’s wildlife-rich Masai Mara region. This ILRI project was looking to find ways of balancing the needs of people, lands and wildlife. In The Great Migration (CBS ’60 Minutes’, 15 minutes, October 2009), Scott Pelley interviews Reid about the threats to this natural spectacle and the part local Masai are playing to address these threats.

Collaborative conservation may indeed be the answer to saving the Serengeti ecosystem. Protecting majestic wild places and the wildlife they support, places that instill wonder in us, matters, of course, but so does protecting millions of people from severe poverty, chronic hunger and the afflictions that come in their wake: disease and untimely death.

With a large percentage of its land area under protection, Tanzania is a world leader in biodiversity conservation. It is also very, very poor. How this tug at resources—whether the Serengeti Plains will be used for wildlife tourism or other kinds of commerce—will play out may depend on how much the local communities living in poverty near the wildlife benefit from saving this, the last of the great migrations of big mammals on Earth.

More . . . (New York Times, 15 June 2010)

An alternative, southern road in Tanzania is discussed on a webpage of the Frankfurt Zoological Society.

See Paul Kirui’s blog on 17 June 2010 the migration on Masai Mara Updates.

BioInnovate Africa launches call for concept notes on ‘Adapting to Climate Change in Agriculture and the Environment in Eastern Africa’

BioInnovate Africa logoThe Swedish-funded BioInnovate Africa program today launched a call for concept notes on “Adapting to Climate Change in Agriculture and the Environment in Eastern Africa.”

The deadline for receipt of the Concept Notes is July 9, 2010.

More information … (BioInnovate Africa)

East and central African countries meet in Addis to address climate change regionally

Here water is life,

The Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) is holding a conference—Climate Change Adaptation Strategies, Capacity Building and Agricultural Innovations to Improve Livelihoods in Eastern and Central Africa: Post-Copenhagen—in Addis Ababa, Ethiopia, 7–9 June 2010.

Joining ASARECA for this 3-day sub-regional meeting are representatives from the Ethiopian Ministry of Agriculture and Rural Development; the Ethiopian Institute of Agricultural Research; the International Livestock Research Institute (ILRI), which has a principal campus in Addis Ababa; the International Center for Agricultural Research in the Dry Areas (ICARDA), based in Syria; and other regional and international partners.

Participants of the ten countries that are members of ASARECA are being presented with the United Nations Framework Convention on Climate Change (UNFCCC) and implications for African countries of the resolutions of last December's climate conference in Copenhagen. The participants will assess the relative vulnerability to climate change of its ten member countries, as well as the impacts expected from climate change and the national agricultural adaptation strategies developed in those countries.

The agricultural innovations and technologies already available for responding to climate change and variability will be assessed for their ability to improve livelihoods in the region's arid and semi-arid areas. The participants will recommend optimal ways to negotiate and facilitate implementation of international climate change agreements in the region as well as ways simultaneously to reduce the impacts of climate change and climate variability while improving livelihoods of dryland peoples, who are particularly vulnerable to a warming planet.

Indian dairy is big dairy – and it’s all done by small producers

India, Andhra Pradesh, Ramchandrapuram village

A recent article in the Economist — ‘Indian policymakers should see agriculture as a source of growth, not votes’ — in its 13-19 Mar 2010 issue states that: ‘Indian agriculture has performed so poorly largely because governments have treated it as a source of votes rather than as an engine of growth. . . . India’s government still fixes prices and subsidises inputs, when public money would be far better spent on infrastructure and research. . . . India needs to stop seeing agriculture as a problem to be nursed and start thinking of it as an opportunity to be grasped. . . . India is already an agricultural force in some crops. It is the second-biggest exporter of cotton and was a net exporter of cereals for a decade after 1995 . . . .’

What the Economist article omits to mention is that India nearly a decade ago (2001) became the world’s biggest milk producer. Remarkably, almost all of that milk is produced by some 40 million households keeping just a few cows or buffaloes on small plots of land. Those households are, indeed, an opportunity to be realized.

For more information about smallholder dairy research, visit ILRI’s ‘Livestock Markets Digest‘ blog.

Overcoming the Napier grass disease threat to East African dairy farmers

Also called elephant grass, Napier grass is planted on farms across East Africa as a source of feed for dairy cows. Farmers cut the grass for their livestock, carrying it home for stall feeding.

It is the most important forage grass in the region, constituting 40 to 80% of forages used by smallholder dairy farmers. In Kenya, half a million smallholder dairy producers rely on Napier grass to feed their cows. In Uganda, 90% of farmers rely entirely on Napier grass as fodder for their improved dairy cattle.

The livelihoods of these farmers are threatened by outbreaks of stunt and smut diseases affecting the Napier grass. To tackle the threat, the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) funded a three-year project to determine the extent of the disease problem, to collect disease-resistant Napier grass clones identified by farmers, and to identify best management practices used by farmers to mitigate the impact of the diseases.

After three years researching the problem in Kenya, Tanzania and Uganda, project researchers from the International Livestock Research Institute, Rothamsted Research, the Kenya Agriculture Research Institute, the National Agricultural Research Organisation (Uganda) and the National Biological Control Programme (Tanzania) will meet with colleagues from the region to share results and recommendations, promote good practices and draw other scientists into the project.

The workshop will be held at ILRI Ethiopia from 1 to 3 June, 2010.

More information:

Project website

Project outputs

Project news item from Kenya

Livestock vaccine offers lifeline to many

ITM Vaccine

A vaccine is being made available to save the lives of a million cattle in sub-Saharan Africa against a lethal disease and to help safeguard the livelihoods of people who rely on their cattle for their survival.

East Coast fever is a tick-transmitted disease that kills one cow every 30 seconds. It puts the lives of more than 25 million cattle at risk in the 11 countries of sub-Saharan Africa where the disease is now endemic. The disease endangers a further 10 million animals in regions such as southern Sudan, where it has been spreading at a rate of more than 30 kilometres a year. While decimating herds of indigenous cattle, East Coast fever is an even greater threat to improved exotic cattle breeds and is therefore limiting the development of livestock enterprises, particularly dairy, which often depend on higher milk-yielding crossbred cattle. The vaccine could save the affected countries at least a quarter of a million US dollars a year.

Registration of the East Coast fever vaccine is central to its safety and efficacy and to ensuring its sustainable supply through its commercialization. The East Coast fever vaccine has been registered in Tanzania for the first time, a major milestone that will be recognized at a launch event in Arusha, northern Tanzania, on May 20. Recognizing the importance of this development for the millions whose cattle are at risk from the disease, governments, regulators, livestock producers, scientists, veterinarians, intellectual property experts, vaccine distributors and delivery agents as well as livestock keepers – all links in a chain involved in getting the vaccine from laboratory bench into the animal – will be represented.

An experimental vaccine against East Coast fever was first developed more than 30 years ago at the Kenyan Agricultural Research Institute (KARI). Major funding from the UK Government’s Department for International Development (DFID) and others enabled work to produce the vaccine on a larger scale. When stocks from 1990s ran low, the Africa Union/Interafrican Bureau for Animal Resources and chief veterinary officers in the affected countries asked the International Livestock Research Institute (ILRI) to produce more and ILRI subsequently produced a million doses of the vaccine to fill this gap. But the full potential for livestock keepers to benefit from the vaccine will only be achieved through longer term solutions for the sustainable production, distribution and delivery of the vaccine.

With $28US million provided by the Bill & Melinda Gates Foundation and DFID, a not-for-profit organization called GALVmed (Global Alliance for Livestock Veterinary Medicines) is fostering innovative commercial means for the registration, commercial distribution and delivery of this new batch of the vaccine. A focus on sustainability underpins GALVmed’s approach and the Global Alliance is bringing public and private partners together to ensure that the vaccine is available to those who need it most.

Previous control of East Coast fever relied on use of acaracide dips and sprays, but these have several drawbacks. Ticks can develop resistance to acaracides and regular acaricide use can generate health, safety and environmental concerns. Furthermore, dipping facilities are often not operational in remote areas.

This effective East Coast fever vaccine uses an ‘infection-and-treatment method’, so-called because the animals are infected with whole parasites while being treated with antibiotics to stop development of disease. Animals need to be immunized only once in their lives, and calves, which are particularly susceptible to the disease, can be immunized as early as 1 month of age.

Over the past several years, the field logistics involved in mass vaccinations of cattle with the infection-and-treatment method have been greatly improved, due largely to the work of a private company, VetAgro Tanzania Ltd, which has been working with Maasai cattle herders in northern Tanzania. VetAgro has vaccinated more than 500,000 Tanzanian animals against East Coast fever since 1998, with more than 95% of these vaccinations carried out in remote pastoral areas. This vaccination campaign has reduced calf mortality in herds by 95%. In the smallholder dairy sector, vaccination reduced the incidence of East Coast fever by 98%. In addition, most smallholder dairy farmers reduced their acaracide use by at least 75%, which reduced both their financial and environmental costs.

Notes for Editors

What is East Coast fever?
East Coast fever is caused by Theleria parva (an intracellular protozoan parasite), which is transmitted by the brown ear tick Rhipicephalus appendiculatus. The parasites the tick carries make cattle sick, inducing high fever and lympho-proliferative syndrome, usually killing the animals within three weeks of their infection.

East Coast fever was introduced to southern Africa at the beginning of the twentieth century with cattle imported from eastern Africa, where the disease had been endemic for centuries. This introduction caused dramatic cattle losses. The disease since then has persisted in 11 countries in eastern, central and southern Africa – Burundi, Democratic Republic of Congo, Kenya, Malawi, Mozambique, Rwanda, Sudan, Tanzania, Uganda, Zambia and Zimbabwe. The disease devastates the livelihoods of small-scale mixed crop-and-livestock farmers, particularly smallholder and emerging dairy producers, as well as pastoral livestock herders, such as the Maasai in East Africa.

The infection-and-treatment immunization method against East Coast fever was developed by research conducted over three decades by the East African Community and the Kenya Agricultural Research Institute (KARI) at Muguga, Kenya (www.kari.org). Researchers at the International Livestock Research Institute (ILRI), in Nairobi, Kenya (www.ilri.org), helped to refine the live vaccine. This long-term research was funded by the UK Department for International Development (DFID) (www.dfid.gov.uk) and other donors of the Consultative Group on International Agricultural Research (CGIAR) (www.cgiar.org).

The first bulk batch of the vaccine, produced by ILRI 15 years ago, has protected one million animals against East coast fever, with the survival of these animals raising the standards of living for many livestock keepers and their families. Field trials of the new vaccine batch, also produced at ILRI, were completed in accordance with international standards to ensure that it is safe and effective.

How is the vaccine stored and administered?
Straws of the East Coast fever vaccine are stored in liquid nitrogen until needed, with the final preparation made either in an office or in the field. The vaccine must be used within six hours of its reconstitution, with any doses not used discarded. Vaccination is always carried out by trained veterinary personnel working in collaboration with livestock keepers. Only healthy animals are presented for vaccination; a dosage of 30% oxytetracycline antibiotic is injected into an animal’s muscle while the vaccine is injected near the animal’s ear. Every animal vaccinated is given an eartag, the presence of which subsequently increases the market value the animal. Young calves are given a worm treatment to avoid worms interfering with the immunization process.

Note
Case studies illustrating the impact of the infection-and-treatment vaccine on people’s lives are available on the GALVmed website at: www.galvmed.org/path-to-progress
For more information about the GALVmed launch of the live vaccine, on 20 May 2010, in Arusha, Tanzania, go to www.galvmed.org/

Kenya's Maasai herders take jobs and farm crops to cope with change

Collaborative research between Kenyan Maasai communities and a researcher from Canada’s McGill University has identified how these semi-nomadic herding communities are changing to cope with changing climate and land tenure systems. Results of research conducted during a great drought in Kenya’s Maasailand and other regions from 2007 to 2009 show that more and more Maasai households are diversifying their livelihoods and making use of ‘strategic mobility’ to cope with changing land tenure systems.
In a presentation last week of research findings at the International Livestock Research Institute (ILRI) campus, in Nairobi, Kenya, John Galaty, of McGill University, noted that ‘the Maasai community is dealing with the aftermath of the long drought, which devastated their livelihoods, by making more opportunistic use of their land, by diversifying into cropping, by keeping fewer and faster growing animals and by taking on paying jobs.’
In studies done across nine sites in Ole Tepesi, Maji Moto and Elangata Wuas in Kenya’s Kajiado and Narok districts, researchers found that members of the communities who diversified into agriculture had higher chances of maintaining their livelihoods during droughts than those who relied on animals alone. The research looked at the experiences of higher, medium- and low-income households.
Well-known methods used by the Maasai to cope with drought—such as splitting herds, keeping fewer animals and moving stock to find water or grass—are still in use. A closer assessment of mobility patterns showed that pastoralists with external sources of income could afford to keep their animals in one location during drought because they were able to buy and bring in feed and drugs for them. The poorest members of the community were hurt the most by drought because they were forced to move their animals in search of fodder or water. The study also disclosed that the richer members of the community hired their poorer neighbours to herd their animal stock to better grazing lands while they themselves pursued other livelihood options.
Galaty said that the movement of animals by the Maasai is never haphazard. ‘The Maasai just don’t start to move once the drought bites,’ he said. ‘We found out that most people moved their animals based on social relationships. People were linked to relatives or friends who lived in areas where pasture was still available. Others relied on word from other parts of the region that pasture was available before starting to move. In such cases, conventional boundaries were not enforced and people openly shared “private” resources. Some even moved their animals into Tanzania, where they were welcomed by the Maasai who live there.’ The research also showed that stock movement by members of Maasai group ranches was also well planned and coordinated.
Nonetheless, the increasingly popular subdivision of Maasai communal lands into private holdings, often with little consultation with the communities concerned, is greatly restricting the traditional mobility of these herding communities. Individuals are increasingly enforcing their rights to private ownership, and use, of land in both Kajiado and Narok districts. Such privatization of land threatens Maasai pastoralism by disrupting the well-established ‘mobility’ mechanism they use to cope with periodic drought.
An earlier (not yet published) study by David Nkedianye, a Maasai graduate student with ILRI, on the effects of the 2005 to 2006 drought on Kenyan Maasai indicates that land privatization and large movements of animals can weaken the ability of households to cope with drought. For example, at times in this drought the Kitengela Maasai rangeland, although it received relatively good rainfall, had the greatest number of livestock deaths because of an influx of livestock brought to Kitengela by herders from other Maasai communities in southern Kenya and northern Tanzania.

Staff of ILRI’s People, Livestock and Environment Theme, who are conducting livestock research in these same Maasai lands, hosted Galaty and organized for his presentation.









Climate experts gather in Nairobi to seek ‘transformative’ solutions for feeding a growing and warming world

Achim Steiner making his introductory remarks at the CCAFS conference

The livelihoods of many of the world’s rural poor are increasingly threatened by climate change. Most of these livelihoods are dependent on farming, fishing and forests. Climate change will affect and worsen the living conditions of people who are already vulnerable and food insecure, especially in developing countries. In the face of what seems an inevitable change, scientists are looking for solutions that will help poor smallholder farmers adapt their agricultural practices to cope with, and mitigate, climate change.

Through a new Climate Change Agriculture and Food Security (CCAFS) initiative, a consortium of the Consultative Group on International Agricultural Research (CGIAR) is seeking innovative approaches to address the emerging threats to global agriculture and food security. CCAFS is a 10-year initiative launched by the CGIAR and the Earth System Science Partnership (ESSP). CCAFS works to diagnose and analyse threats to agriculture and food security, to provide evidence for development of climate change policies and to identify and develop pro-poor adaptation and mitigation practices that will benefit poor farmers and urbanites alike.

In a CCAFS workshop held at the World Agroforesty Centre (ICRAF), in Nairobi, Kenya, on 4 May 2010, scientists and researchers held discussions on ways of ‘building food security in the face of climate change’. Among the key challenges to food security identified by the participants were: lack of a platform by which developing countries could share their experiences in dealing with climate change; weaknesses in presenting lessons from climate change impacts on farming; and inability to implement policies to address climatic risks to developing-country agriculture because of widespread poverty, limited human capital, and poor governance in many poor countries.

According to Achim Steiner, the Executive Director of the United Nations Environment Program (UNEP), ‘Agriculture needs to be understood within the greater context of livelihood sustainability’. Steiner believes the threat of climate change offers opportunities for agricultural development if new innovative ways of enhancing agriculture are explored. For example, agricultural practices that help communities reduce carbon emissions should be considered. ‘If we can demonstrate that a farming or production system reduces emissions, communities could be paid to develop it for expansion to solve two challenges at the same time. ‘The future of agriculture is not just in increasing production,’ the UNEP head said, ‘but in having working systems that protect the planet and that benefit those who engage in practices that protect the planet and livelihoods of the poor.

Thomas Rosswall, who chairs the CCAFS Steering Committee, noted that the ‘big disconnect [in addressing agricultural production] has been because development and global change have been addressed, researched and funded as unrelated issues’. He said ‘the approach to research needs to change so that it can link the local experiences to global needs while working with the poor to improve agricultural productivity.

Participants of the meeting agreed that ‘transformative solutions’ are needed to address agricultural challenges in the world. These solutions, they agreed, need to work with, not against, nature and they need to address conflicts of interest among farmers, countries and markets. Researchers, they said, need to focus on plant breeding and improving soil fertility. And regional decision-makers need to integrate development and climate-based polices and strategies between countries. In many countries, agricultural productivity is already being linked to climate change. In Africa, for example, an African Bio-Carbon Initiative is working to reduce the impacts of climate change on the continent’s farmers while increasing and sustaining their agricultural production. In India, environmental studies show that climate change is creating opportunities for farmers to increase their vegetable production, and thus their incomes.

According to David Radcliffe, of the European Commission, the CCAFS initiative will build understanding of the problems climate change is causing smallholder tropical farmers and will provide evidence for policies that can reduce these problems. CCAFS will focus on climate hotspots. It will pilot methods to help farmers both adapt to climate change and reduce their production of greenhouse gases, which cause climate change. Both adaptation and mitigation methods, Radcliffe said, will be needed to feed the world’s growing population while using fewer resources.