Getting gender issues into people’s heads and hearts–An expert assessment for agricultural development

The gender-specific disadvantages and inequities faced by rural women in poor countries create challenges for the research and development specialists working to help them empower themselves. Political, social and cultural environments all need to change before most women will be able to take a larger role in generating incomes. Men and women both need to be involved for that to happen. And when that does happen, men and women both will benefit from women’s empowerment.

The views of four women experts in the area, shown in this short (3 minute: 40 second) film, were recorded at a February 28–2 March workshop held at the International Livestock Research Institute (ILRI), in Addis Ababa, Ethiopia, where a group of experts assessed the current state of gender-related agricultural research in Africa, particularly the experiences of a 5-year joint ILRI-Ethiopian government project called ‘Improving Productivity and Market Success of Ethiopian farmers (IPMS).

The following is a transcript

Ranjitha Puskur, Indian, agricultural economist at International Livestock Research Institute (ILRI)
One of the major constraints that we saw that came in the way of helping women to take part in market-oriented agricultural activities is their lack of technical skills and knowledge.

Seblewongel Deneke, Ethiopian, sociologist at the Canadian International Development Agency (CIDA)–Ethiopia Canada Cooperation Office
The project that we are looking at now from IPMS with ILRI has done a lot of experimenting on how to target women, how to target the household, how to get them engaged and how in some ways make people see the other side of things.

Ranjitha Puskur
One of the things that we tried to do was to make sure the women have more access to knowledge and skill development through a number of trainings—and also bringing actually both the husband and wife together for the training so that they have a shared knowledge. We have demonstrated that this is a good way of approaching knowledge and skill sharing with women and men.

Jemimah Njuki, Kenyan, sociologist
What we have recently done in ILRI in terms of women and livestock is tried to put together what is it that we know at the moment on women and livestock and how to use livestock as a pathway out of poverty for women.

Seblewongel Deneke
That I think is one of the gaps in this country—there isn’t much research happening. And on gender specifically, I think we look to ILRI for some of the research it’s done. And I think the approach that they are using, working with their development partners in getting those research works done, is excellent and it should be strengthened.

Anne Waters-Bayer, Canadian/Dutch, Ecology, Technology and Culture Foundation
I’m a bit surprised, I must say, to come to a workshop now in 2011 and to hear actually many of the same things being said that were said back in the early 1980s. We published this 30 years ago but publishing wasn’t enough. We obviously didn’t manage to get into people’s heads, into their hearts and into the materials that they are dealing with day to day our messages about the important role of women in agricultural development.

Jemimah Njuki
We are hoping that this then becomes a starting point from which development partners can then start saying this has worked before, this has not worked and research organizations can then say, these are the further questions that we need to address in terms of generating evidence.

Seblewongel Deneke
Education is important. The more educated the women are, the more they will have control over the number of family members they can have. Reproductive health, the population pressure, all those things—there are many factors out there: it’s not just agriculture in isolation. For the research side of things that interlink—inter-linkages between sectors may be looked at, and then, maybe the answers would come from different angles.

Ranjitha Puskur
There have been a number of projects, often localized—projects working on specific issues in specific areas and at specific times. So there’s all these pieces of the puzzle scattered everywhere, and this workshop is an attempt to bring all this together.

Seblewongel Deneke
Yes, IPMS has done quite a bit of work on making research linked with the development aspect, and we have other projects that are doing similar approaches, where research and the development partners have come together to actually do the work together. And I think that is the best way to go forward.

Jemimah Njuki
We have made a lot of progress in terms of at least understanding what the gender issues in agriculture are, of even identifying some of the strategies that could be used to address these gender inequalities. I think what remains to be done is to see how those strategies, how those interventions, can be done at a scale that’s large enough to reach millions of women—which we need to do!

Livestock boom risks aggravating animal ‘plagues,’ poses growing threat to food security and health of world’s poor

Shepherd in Rajasthan, India

Research released at conference calls for thinking through the health impacts of agricultural intensification to control epidemics that are decimating herds and endangering humans (Picture credit: ILRI/Mann).

Increasing numbers of domestic livestock and more resource-intensive production methods are encouraging animal epidemics around the world, a problem that is particularly acute in developing countries, where livestock diseases present a growing threat to the food security of already vulnerable populations, according to new assessments reported today at the International Conference on Leveraging Agriculture for Improving Nutrition & Health in New Delhi, India.

‘Wealthy countries are effectively dealing with livestock diseases, but in Africa and Asia, the capacity of veterinary services to track and control outbreaks is lagging dangerously behind livestock intensification,’ said John McDermott, deputy director general for research at the International Livestock Research Institute (ILRI), which spearheaded the work. ‘This lack of capacity is particularly dangerous because many poor people in the world still rely on farm animals to feed their families, while rising demand for meat, milk and eggs among urban consumers in the developing world is fueling a rapid intensification of livestock production.’

The global conference (http://2020conference.ifpri.info), organized by the International Food Policy Research Institute, brings together leading agriculture, nutrition and health experts to assess ways to increase agriculture’s contribution to better nutrition and health for the world’s most vulnerable people.

The new assessments from ILRI spell out how livestock diseases present ‘double trouble’ in poor countries. First, livestock diseases imperil food security in the developing world (where some 700 million people keep farm animals and up to 40 percent of household income depends on them) by reducing the availability of a critical source of protein. Second, animal diseases also threaten human health directly when viruses such as the bird flu (H5N1), SARS and Nipah viruses ‘jump’ from their livestock hosts into human populations.

McDermott is a co-author with Delia Grace, a veterinary and food safety researcher at ILRI, of a chapter on livestock epidemics in a new book called ‘Handbook of Hazards and Disaster Risk Reduction.’ This chapter focuses on animal plagues that primarily affect livestock operations—as opposed to human populations—and that are particularly devastating in the developing world.

‘In the poorest regions of the world, livestock plagues that were better controlled in the past are regaining ground,’ they warn, with ‘lethal and devastating impacts’ on livestock and the farmers and traders that depend on them. These ‘population-decimating plagues’ include diseases that kill both people and their animals and destroy livelihoods.

Livestock-specific diseases include contagious bovine ‘lung plague’ of cattle, buffalo and yaks, peste des petits ruminants (an acute respiratory ailment of goats and sheep), swine fever (‘hog cholera’) and Newcastle disease (a highly infectious disease of domestic poultry and wild birds). The world’s livestock plagues also include avian influenza (bird flu) and other ‘zoonotic’ diseases, which, being transmissible between animals and people, directly threaten human as well as animal health.

McDermott and Grace warn that new trends, including rapid urbanization and climate change, could act as ‘wild cards,’ altering the present distribution of diseases, sometimes ‘dramatically for the worse.’ The authors say developing countries need to speed up their testing and adoption of new approaches, appropriate for their development context, to detect and then to stop or contain livestock epidemics before they become widespread.

In a separate but related policy analysis to be presented at the New Delhi conference, McDermott and Grace focus on links between agricultural intensification and the spread of zoonotic diseases. The researchers warn of a dangerous disconnect: the agricultural intensification now being pursued in the developing world, they say, is typically focused on increasing food production and profitability, while potential effects on human health remain ‘largely ignored.’

A remarkable 61 percent of all human pathogens, and 75 percent of new human pathogens, are transmitted by animals, and some of the most lethal bugs affecting humans originate in our domesticated animals. Notable examples of zoonotic diseases include avian influenza, whose spread was primarily caused by domesticated birds; and the Nipah virus infection, which causes influenza-like symptoms, often followed by inflammation of the brain and death, and which spilled over to people from pigs kept in greater densities by smallholders.

The spread and subsequent establishment of avian influenza in previously disease-free countries, such as Indonesia, was a classic example, McDermott and Grace say, of the risks posed by high-density chicken and duck operations and long poultry ‘value chains,’ as well as the rapid global movement of both people and livestock. In addition, large-scale irrigation aimed at boosting agricultural productivity, they say, has created conditions that facilitate the establishment of the Rift Valley fever virus in new regions, with occasional outbreaks killing hundreds of people along with thousands of animals.

The economic impacts of such zoonotic diseases are enormous. The World Bank estimates that if avian influenza becomes transmissible from human to human, the potential cost of a resulting pandemic could be USD3 trillion. Rich countries are better equipped than poor countries to cope with new diseases—and they are investing heavily in global surveillance and risk reduction activities—but no one is spared the threat as growing numbers of livestock and easy movement across borders increase the chances of global pandemics.

But while absolute economic losses from livestock diseases are greater in rich countries, the impact on the health and livelihoods of people is worse in poor countries. McDermott and Grace point out, for example, that zoonotic diseases and food-borne illnesses associated with livestock account for at least 16 percent of the infectious disease burden in low-income countries, compared to just 4 percent in high-income nations.

Yet despite the great threats posed by livestock diseases, McDermott and Grace see a need for a more intelligent response to outbreaks that considers the local disease context as well as the livelihoods of people. They observe that ‘while few argue that disease control is a bad thing, recent experiences remind us that, if livestock epidemics have negative impacts, so too can the actions taken to control or prevent them.’

An exclusive focus on avian influenza preparedness activities in Africa relative to other more important disease concerns, they point out, invested scarce financial resources to focus on a disease that, due to a low-density of chicken operations and scarcity of domestic ducks, is unlikely to do great damage to much of the continent. And they argue that a wholesale slaughter of pigs in Cairo instituted after an outbreak of H1N1 was ‘costly and epidemiologically pointless’ because the disease was already being spread ‘by human-to-human transmission.’

McDermott and Grace conclude that to build surveillance systems able to detect animal disease outbreaks in their earliest stages, developing countries will need to work across sectors, integrating veterinary, medical, and environmental expertise in ‘one-health’ approaches to assessing, prioritizing and managing the risks posed by livestock diseases.

More information on why animals matter to health and nutrition: https://cgspace.cgiar.org/handle/10568/3152 and https://cgspace.cgiar.org/handle/10568/3149

ILRI genebank manager elected ‘Fellow’ of the prestigious Society of Biology

Alexandra Jorge ILRI genebank manager

Alexandra Jorge, the genebank manager at the Addis Ababa, Ethiopia, campus of the International Livestock Research Institute (ILRI), is one of four Africa-based scientists elected, this past December, to join the Society of Biology, a leading professional body that represents individuals committed to biology from academia, industry, education and research.

With over 80,000 members, the Society of Biology promotes advances in biological science across the world and awards fellowships to individuals who make ‘contribution to the advancement of biological sciences, and who have over five years experience in positions of senior responsibility’. The society is a particular supporter of work done by scientists in developing countries.

Jorge, a plant physiologist, works under the People, Livestock and Environment theme at ILRI, where she is managing the study, documentation and conservation of forage seeds in a forage genebank located at ILRI’s campus in Addis Ababa. The genebank, together with Ethiopian field sites in Soddo, Ziway and Debre Zeit, contains over 20,000 types of tropical grasses, legumes and tree forages, which are routinely tested to ensure they remain healthy and viable for use in farms.

‘To be invited to become a Fellow of the Society of Biology is a great honour to any scientist and I am very proud of this achievement,’ says Jorge, ‘I thank the African Women in Agricultural Research and Development (AWARD) program for nominating me for this fellowship and I look forward to working with the large network of scientists in the Society.’

Other Fellows elected to the Society of Biology in December 2010 are Stella Asuming-Brempong, Waceke Wanjohi and Sheila Okoth. These four women are also fellows of AWARD, a Gender and Diversity Program of the Consultative Group on International Agricultural Research.

For African women scientists, such recognition is significant.

‘It can be a struggle for scientists from the developing world to network successfully and maximize the benefits of international collaboration due to geographical and financial reasons,’ said Vicki Wilde, director of the Gender and Diversity Program and AWARD, ‘These scientist’s voices—and the unheard voices of millions of farmers, particularly women, in sub-Saharan Africa—will now be heard and their work taken seriously.’

—-

For more information see the following article: http://www.societyofbiology.org/newsandevents/news/view/210

Read about ILRI’s work in managing forage diversity on https://www.ilri.org/ForageDiversity and https://cgspace.cgiar.org/handle/10568/228

For more on crop genebanks and forages visit: http://cropgenebank.sgrp.cgiar.org/ and http://www.tropicalforages.info/

Food-feed crops research: A synthesis

In December 2010, a special issue of Animal Nutrition and Feed Technology focuses on the fodder quality of crop residues and how this can be improved through the close collaboration of crop and livestock scientists in multi-dimensional crop improvement programmes.

Over the next two decades, rapid urbanization and rising incomes in the developing world will continue to feed an on-going livestock revolution. In India, this boom in the production of animal products will be driven by a demand for milk that is projected to increase by more than 80 million tons in 15 years.

Smallholder livestock producers will have new opportunities to raise their incomes on the back of this increasing demand, particularly the vulnerable communities occupying dry, marginal and remote lands that rely most heavily on their animals.

Feed scarcity and resulting high feed costs are one of the major constraints and threats to higher benefits from livestock otherwise offered by the rising demand for livestock products. New strategies for improving feed resources are urgently needed, but they need to take into account the increasing scarcity of the natural resource base, particularly of arable land and increasingly water.

Crop residues are the single most important feed resource in India, and the national feed resource scenarios predict that their importance for livestock feeding will further increase. In several parts of India, weight for weight, crop residue prices are now approaching, and sometimes even exceeding, half the prices of their grains.

Crop residues do not require specific land and water allocations, since these are required in any case for the production of grains. Unfortunately, the fodder quality of crop residues is often low, and in the past decades, efforts have been invested in upgrading the feeding value of crop residues (implicitly from cereals since leguminous residues can have excellent fodder quality) through chemical, physical and biological treatments.

However, these approaches have seen little adoption by farming communities. A different paradigm has been developed in this this special issue of Animal Nutrition and Feed Technology, namely, the improvement of crop residues at source through close collaboration of crop and livestock scientists in multidimensional crop improvement programs. Until recently, fodder traits of crop residues were largely ignored in crop improvement, although farmers were traditionally aware of differences in the fodder quality of crop residues even within the same species. Farmers’ perception of crop residue fodder traits could effect the adoption of new cultivars, resulting sometimes in the rejection of new cultivars that have been improved only for grain yields.

In response, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and the International Livestock Research Institute (ILRI) together with their partners from the Indian Council of Agricultural Research (ICAR) initiated several multidisciplinary research projects to create crop cultivars that better match the need of farmers, particularly in mixed crop-livestock systems which are dominant in many parts of the developing world.

The fundamental issues explored in these collaborative projects, and expounded in this special issue, are: (1) availability of livestock nutritionally-significant cultivar-dependent variation in crop residue fodder quantity and quality; (2) relationships between crop residue fodder traits and primary food traits and possible trade-offs between the traits; (3) technologies for quick and inexpensive phenotyping of large set of samples for simple fodder quality that are well correlated with actual livestock productivity; (4) breeding techniques for further genetic enhancement towards food-feed traits; and (5) upgrading crop residue fodder in value chains through densification and fortification.

These valuable contributions serve as eye-openers to researchers and present a strong case for further strengthening such collaborations between national and international crop and livestock institutions. More importantly, they pave the way for expanding work on the promising approach of producing dual-purpose varieties of key crops for mixed crop-livestock systems given that these systems will be crucial in feeding the next 3 billion people.

View the special issue

Improving water productivity of crop-livestock systems in drought-prone regions

Today saw the publication of a special issue of Experimental Agriculture guest edited by Tilahun Amede, Shirley Tarawali and Don Peden. It presents evidence from Ethiopia, Zimbabwe and India, and captures current understanding of strategies to improve water productivity in drought-prone crop-livestock systems.

Crop-livestock systems in sub-Saharan Africa (SSA) are mostly rainfall-dependent and based on fragmented marginal lands that are vulnerable to soil erosion, drought and variable weather conditions. The threat of water scarcity in these systems is real, due to expanding demand for food and feed, climate variability and inappropriate land use.

According to recent estimates, farming, industrial and urban needs in developing countries will increase water demand by 40% by 2030. Water shortage is expected to be severe in areas where the amount of rainfall will decrease due to climate change. The lack of capacity of communities living in drought-prone regions to respond to market opportunities, climatic variability and associated water scarcity also results from very low water storage facilities, poverty and limited institutional capacities to efficiently manage the available water resources at
local, national and basin scales.

The spiral of watershed degradation causes decline in water budgets, decreases soil fertility and reduces farm incomes in SSA and reduces crop and livestock water productivity. In areas where irrigated agriculture is feasible, there is an increasing demand for water and competition among different users and uses.

Strategies and policies to reduce rural poverty should not only target increasing food production but should also emphasize improving water productivity at farm, landscape, sub-basin and higher levels. In drought-prone rural areas, an increase of 1% in crop water productivity makes available at least an extra 24 litres of water a day per person. Moreover, farming systems with efficient use of water resources are commonly responsive to external and internal drivers of change.

Articles included in the issue are:

Amede, T., Tarawali, S. and Peden, D. Improving water productivity in crop livestock systems of drought-prone regions. Editorial Comment

Amede, T., Menza, M. and Awlachew, S. B. Zai improves nutrient and water productivity in the Ethiopian highlands

Descheemaeker, K., Amede, T., Haileslassie, A. and Bossio, D. Analysis of gaps and possible interventions for improving water productivity in crop livestock systems of Ethiopia

Derib, S. D., Descheemaeker, K., Haileslassie, A. and Amede, T. Irrigation water productivity as affected by water management in a small-scale irrigation scheme in the Blue Nile Basin, Ethiopia

Awulachew, S. B. and Ayana, M. Performance of irrigation: an assessment at different scales in Ethiopia

Ali, H., Descheemaeker, K., Steenhuis, T. S. and Pandey, S. Comparison of landuse and landcover changes, drivers and impacts for a moisture-sufficient and drought-prone region in the Ethiopian Highlands

Mekonnen, S., Descheemaeker, K., Tolera, A. and Amede, T. Livestock water productivity in a water stressed environment in Northern Ethiopia

Deneke, T. T., Mapedza, E. and Amede, T. Institutional implications of governance of local common pool resources on livestock water productivity in Ethiopia

Haileslassie, A., Blümmel, M., Clement, F., Descheemaeker, K., Amede, T. Samireddypalle, A., Acharya, N. S., Radha, A. V., Ishaq, S., Samad, M., Murty, M. V. R. and Khan, M. A. Assessment of the livestock-feed and water nexus across a mixed crop-livestock system’s intensification gradient: an example from the Indo-Ganga Basin

Clement, F., Haileslassie, A., Ishaq, S., Blummel, M., Murty, M. V. R., Samad, M., Dey, S., Das, H. and Khan, M. A. Enhancing water productivity for poverty alleviation: role of capitals and institutions in the Ganga Basin

Sibanda, A., Tui, S. H.-K., Van Rooyen, A., Dimes, J., Nkomboni, D. and Sisito, G. Understanding community perceptions of land use changes in the rangelands, Zimbabwe

Senda, T. S., Peden, D., Tui, S. H.-K., Sisito, G., Van Rooyen, A. F. and Sikosana, J. L. N. Gendered livelihood implications for improvements of livestock water productivity in Zimbabwe

View the full issue

State of the World 2011: Innovations Nourishing the Planet

State of the World: Innovations that Nourish the Planet: Cover State of the World 2011 provides new insight into under-appreciated innovations working right now on the ground to alleviate hunger (photo credit: Worldwatch Institute).

This week Worldwatch Institute released its flagship publication, State of the World 2011: Innovations that Nourish the Planet. The report spotlights successful and efficient ways of alleviating global hunger and poverty.

Agricultural systems analyst Mario Herrero and other staff of the International Livestock Research Institute (ILRI) are the authors of Chapter 14, ‘Improving food production from livestock’.

While investment in agricultural development by governments, international lenders, and foundations has escalated in recent years, it is still nowhere near what is needed to help the 925 million people who are undernourished. Since the mid-1980s when agricultural funding was at its height, agriculture’s share of global development aid has fallen from over 16 per cent to just 4 per cent today.

‘The international community has been neglecting entire segments of the food system in its efforts to reduce hunger and poverty,’ said Danielle Nierenberg, co-director of Worldwatch’s Nourishing the Planet project.

State of the World 2011 draws from hundreds of case studies and first-person examples to offer solutions to reducing hunger and poverty.

For example, grassroots organizations are helping to fight hunger in Africa, which has the world’s largest area of permanent pasture and the largest number of pastoralists and 15–25 million people dependent on livestock. In South Africa and Kenya, pastoralists are preserving indigenous varieties of livestock that are adapted to the heat and drought of local conditions—traits that will be crucial as climate extremes on the continent worsen. In Maralal in the northern region of Kenya, one group of Maasai pastoralists is working with the Africa LIFE Network to increase their rights as keepers of both genetic diversity and the land. Jacob Wanyama, coordinator for the African LIFE Network and advisor to the Nourishing the Planet Project, says Ankole cattle—a breed indigenous to Eastern Africa and traditionally used by pastoralists in the area for centuries—are not only ‘beautiful to look at,’ but are one of the ‘highest quality’ breeds.’ They can survive in extremely harsh, dry conditions—something that’s more important than ever as climate change takes a bigger hold on Africa. ‘Governments need to recognize,’ says Wanyama, ‘that pastoralists are the best keepers of genetic diversity.’

The State of the World 2011 report is accompanied by other informational materials including briefing documents, summaries, an innovations database, videos, and podcasts, all of which are available at www.NourishingthePlanet.com.

In conducting this research, Worldwatch’s Nourishing the Planet project received unprecedented access to major international research institutions, including those like ILRI in the Consultative Group on International Agricultural Research. The team also interacted extensively with farmers and farmers’ unions as well as with the banking and investment communities.

This report was produced with support from the Bill and Melinda Gates Foundation.

Investments needed to help poor people take advantage of an on-going boom in livestock production in developing countries

Ploughing with cattle in West Bengal

Farmer Noor Ali ploughs his field in Brahampur, India. A better understanding of the multiple roles played by livestock in developing communities will help improve livestock production and accelerate economic development in poor countries (photo credit: ILRI/Mann).

Following the 2008/9 global food price crisis, agricultural experts agree that more investment in food production is needed to meet increasing world food demand. Global food security, however, is unlikely to be achieved unless livestock production is made more efficient.

Farm animals fulfil an important role in developing communities, where many people depend on mixed crop-and-livestock farming systems or live in marginal areas where animal agriculture is the only means of producing food. For most of the world’s poorest, about 600 million people, animals provide not only milk, meat and eggs but are also a source of draught power and manure for crop farming, resources that help livestock keepers diversify their income.

For many of these livestock keepers, greater investment in livestock production would make a significant difference in helping them come out of poverty by increasing their sources of food and income. 

The role of livestock in developing communities: Enhancing multifunctionality, a new book co-published by the University of the Free State South Africa, the Technical Centre for Agricultural and Rural Cooperation (CTA) and the International Livestock Research Institute (ILRI), argues that a better understanding of the multiple roles played by livestock in developing communities will help decision-makers and development practitioners not only improve the livestock sector’s efficiency and productivity but, through that, accelerate economic development in poor countries.

Livestock production in the developing world faces the challenge of how to meet an increasing demand for meat, milk and eggs with limited land, water and other natural resources, say two of the book’s authors, Siboniso Moyo, ILRI’s representative in southern Africa, and Frans Swanepoel, senior director of research and professor of sustainable agriculture at the University of the Free State, in Bloemfontein, South Africa.

Examining trends and drivers in livestock production in developing communities, the authors say that the smallholder livestock sector needs to adapt to increasing population and urbanization and the other changes coming in the wake of these changes, such as rapidly changing livestock systems, environments, climates and consumption patterns. All these changes, they say, require stronger policies and institutions.

The authors propose strengthening institutions and policies, providing livestock owners with credit, improving veterinary services, increasing the delivery and uptake of livestock technologies and improving the infrastructure of livestock markets.

The increasing demand for livestock in developing countries due to rising populations and incomes offers many poor livestock keepers new opportunities to raise their incomes by increasing the production and marketing of their livestock products. The main questions are how to include poor people in this livestock boom, and how to help smallholders increase their livestock production while making more efficient use of their land, water and native stock.

Three other big challenges of the fast-changing livestock sector in poor countries are finding ways to feed the increasing numbers of animals in the face of diminishing natural resources, developing diagnostics and vaccines to better protect animals against neglected tropical diseases of livestock as well as zoonotic diseases, which are shared by livestock and people, and finding optimal ways for small-scale livestock keepers to adapt to climate change and reduce their production of greenhouse gases.

The authors, however, note that rising prices of livestock products can open up new market opportunities for small-scale producers, though this alone will not guarantee their competitiveness. Without support, many smallholder livestock producers, especially those in marginal areas, with limited access to information and knowledge, will find it difficult to compete with larger livestock operations in meeting the increasing demand for livestock products while also meeting the more stringent food quality and safety standards the new market is demanding.

‘The livestock sector is an important part of developing communities and the multiple roles that livestock play in meeting the livelihoods of people need to be enhanced for the sector to continue contributing to poverty reduction,’ the book says. ‘Research and development agencies need to come together to address these challenges comprehensively.’

This book provides a list of ‘Livestock development projects that make a difference’ and ways to promote gender equality and empower women through livestock development. Watch for more highlights from the book in upcoming ILRI news articles.

Read more about The role of livestock in developing communities: Enhancing multifunctionality

Download the full text

The end of maize in Africa? A much warmer world calls for completely new ways of farming and consuming

Philip Thornton, CCAFS/ILRI

A newscaster from Kenya Television Network Local interviews Philip Thornton on the impacts of climate change on the African continent (photo credit: ILRI).

A new publication, Agriculture-Climate Letters, published by the Climate Change, Agriculture and Food Security program, this week highlight a paper published on the impacts of a 4ºC warmer world on African agriculture and food security. The lead author of the paper is Philip Thornton, an agricultural systems analyst with the International Livestock Research Institute (ILRI).

‘. . . The UK Met Office says a 4 degree [warmer] world is quite possible, and will plausibly be reached by 2070 or even 2060–in our children’s lifetimes. This will mean average temperature rises of a massive 15ºC in the Arctic, and 3-8ºC in the world’s most populated areas.

‘. . . Agriculture is highly sensitive even to a 2 degree scenario; a 4 degree world is beyond the bounds of both local and global knowledge, both modern and historical experience. . . .

‘A new paper, Agriculture and food systems in sub-Saharan Africa in a four-plus degree world, by Philip Thornton, Peter Jones, Polly Ericksen and Andrew Challinor, foresees profound effects. . . . [E]nsembles of models suggest average yield drops of 19% for maize and 47% for beans, and much more frequent crop failures. . . . Africa-wide, a massive 1.2 million km2 may be forced to flip from typical mixed farms, with both crops and livestock, into pure rangeland. . . .

‘Thus a 4 degree world calls for adaptive capacity in agriculture that is not just about increasing the resilience of current systems, but about completely new ways of farming and consuming. . . . Thornton and colleagues highlight four areas for immediate policy attention:

  • supporting farmers’ own risk-management strategies
  • strengthening basic data collection in agriculture
  • investing seriously in genebanks
  • improving governance of food systems so that poor people can get affordable food

‘. . . Rapidly urbanising populations will need to eat nationally and regionally grown food. If +4 degrees signals the end to half a millennium of Africans eating maize, will the 21st century usher in a new era of indigenous urban foods, be they free-range hamburgers or drought-resistant yamburgers?

Read the whole article at AgClim Letters: Hamburgers and yamburgers? Four-degree futures for food in Africa, 1 November 2010.

Subscribe to receive the monthly science-policy bulletin AgClim Letters in your inbox.

Read the science paper by Philip Thornton et al. in the British journal Philosophical Transactions of the Royal [Society] Series A: Agriculture and food systems in sub-Saharan Africa in a four-plus degree world, 29 November 2010.

ON RESILIENCE: Kenya’s rainfed food production vulnerable to more droughts and floods and shorter growing seasons

Crop farmer in Western Kenya

Consolata James, a farmer in Western Kenya fighting striga, a ‘witches’ weed infesting her maize crop, will likely face shorter growing days and the arrival of new diseases with rising temperatures due to climate change (photo credit: CGIAR).

A research project on climate change adaptation strategies by smallholder farmers in Kenya, which kicked off in April 2009, has completed its first two reports. Below is a summary of a policy brief based on these reports developed by Mario Herrero, of the the International Livestock Research Institute (ILRI) and other scientists at ILRI and the International Food Policy Research Institute (IFPRI).

Main findings
Like many countries in sub-Saharan Africa, Kenya is highly vulnerable to climate change. The country and greater region already experience high temperatures and low but variable rainfall. Adoption of modern technology is low; poverty remains widespread; and infrastructure is under-developed.

Kenya’s highly variable rainfall is unreliable for rainfed agriculture and livestock production. The rainy seasons can be extremely wet, bringing floods and inundation. Even arid lands that comprise 80 per cent of the country are prone to floods. Therefore, they are prone to flood damages and turn to insurance claims. Visit the site to know more about LMR Public Adjusters and how they can help.

Kenya also experiences major droughts every decade and minor ones every three to four years. The damage caused by these droughts is spreading among the increasingly dense populations in these fragile arid and semi-arid lands, where pastoral communities are increasingly being marginalized.

With agriculture accounting for about 26 per cent of Kenya’s gross domestic product and 75 per cent of its jobs, the Kenyan economy is highly sensitive to variations in rainfall. At the same time, rainfed agriculture is, and will remain, the dominant source of staple food production and the foundation of livelihoods of most of Kenya’s rural poor.

Many parts of Kenya are likely to experience shorter growing periods in future; in some areas, the decreases may be severe. Some of the largest losses and gains are predicted for the country’s arid areas, which have too few growing days for crop production but remain important for pastoralists.

Most climate change scenarios show that four key staple crops in Kenya—maize, wheat, groundnuts, and irrigated rice—will experience country-wide losses due to increased evapotranspiration in large cropland areas while maize and bean production will increase modestly in the Kenyan highlands.

An increase in climate variability, leading to more than one drought every five years, could cause large and irreversible livestock losses in Kenya’s drylands.

Read the whole ILRI-IFPRI policy brief for a Kenyan Smallholder Climate Change Adaptation Project: Climate variability and climate change: Impacts on Kenyan agriculture, October 2010.

Prognosis for African food security in a 4ºC+ warmer world is bleak–Philip Thornton

Philip Thornton, CCAFS/ILRI

Kenya Television Network interviews Philip Thornton on the impacts of climate change to the African continent (photo credit: ILRI).

Bottom line implication: A 4-degree warmer world calls for adaptive capacity in agriculture that is not just about increasing the resilience of current systems but about completely new ways of farming and consuming.

The Guardian this week quotes agricultural systems analyst Philip Thornton, of the International Livestock Research Institute (ILRI), on the severe impacts that a 4ºC rise in temperature, now expected to occur within this century, will have on African livelihoods and food production.

'A hellish vision of a world warmed by 4ºC within a lifetime has been set out by an international team of scientists, who say the agonisingly slow progress of the global climate change talks that restart in Mexico today makes the so-called safe limit of 2ºC impossible to keep. A 4ºC rise in the planet's temperature would see severe droughts across the world and millions of migrants seeking refuge as their food supplies collapse.

'"There is now little to no chance of maintaining the rise in global surface temperature at below 2ºC, despite repeated high-level statements to the contrary," said Kevin Anderson, from the University of Manchester, who with colleague Alice Bows contributed research to a special collection of Royal Society journal papers published tomorrow. "Moreover, the impacts associated with 2ºC have been revised upwards so that 2ºC now represents the threshold [of] extremely dangerous climate change.". . .

'Rachel Warren, at the University of East Anglia, described a 4ºC world in her research paper: "Drought and desertification would be widespread. . . . There would be a need to shift agricultural cropping to new areas, impinging on [wild] ecosystems. Large-scale adaptation to sea-level rise would be necessary. Human and natural systems would be subject to increasing levels of agricultural pests and diseases, and increases in the frequency and intensity of extreme weather events."

'Warren added: "This world would also rapidly be losing its ecosystem services, owing to large losses in biodiversity, forests, coastal wetlands, mangroves and saltmarshes [and] an acidified and potentially dysfunctional marine ecosystem. In such a 4ºC world, the limits for human adaptation are likely to be exceeded in many parts of the world.". . .

'In sub-Saharan Africa, "the prognosis for agriculture and food security in a 4ºC world is bleak", according Philip Thornton, of Kenya's International Livestock Research Institute, who led another research team. He notes there will be an extra billion people populating the continent by 2050.

'"Croppers and livestock keepers in sub-Saharan Africa have in the past shown themselves to be highly adaptable to short- and long-term variations in climate. But the kind of changes that would occur in a 4ºC+ world would be way beyond anything experienced in recent times. It is not difficult to envisage a situation where the adaptive capacity and resilience of hundreds of millions of people could simply be overwhelmed by events," Thornton's team concludes. . . .'

Read the whole article at the Guardian: Climate change scientists warn of 4C global temperature rise, 29 November 2010.

‘The limits of human–and natural systems–adaptations are likely to be exceeded’–Climate change researcher Rachel Warren

A 4-degree C warmer world

Projections of global warming relative to pre-industrial for the A1FI emissions scenario—the one we’re currently on. Dark shading shows the mean ±1 standard deviation for the tunings to 19 AR4 GCMs [IPCC Fourth Assessment General Circulation Models]  and the light shading shows the change in the uncertainty range when . . . climate-carbon-cycle feedbacks . . . are included. Published in a Royal Society special issue on climate change, 29 November 2010 (graphic credit: Philosophical Transactions of the Royal Society Series A, Special Issue, 29 November 2010).

An article in the highly regarded Climate Progress website names a paper by agricultural systems analyst Philip Thornton, of the International Livestock Research Institute (ILRI), titled ‘Agriculture and food systems in sub-Saharan Africa [SSA] in a 4°C+ world’, as one of the more important articles appearing in a current special issue on climate change of the Philosophical Transactions of the Royal Society Series A.

‘”In . . .  a 4°C [warmer] world, the limits for human adaptation are likely to be exceeded in many parts of the world, while the limits for adaptation for natural systems would largely be exceeded throughout the world.”

‘One of the greatest failings of the climate science community (and the media) is not spelling out as clearly as possible the risks we face on our current emissions path, as well as the plausible worst-case scenario, which includes massive ecosystem collapse. So much of what the public and policymakers think is coming is a combination of:

  • The low end of the expected range of warming and impacts based on aggressive policies to reduce emissions (and no serious carbon-cycle feedbacks)
  • Analyses of a few selected impacts, but not an integrated examination of multiple impacts
  • Disinformation pushed by the anti-science, pro-pollution crowd

‘In fairness, a key reason the scientific community hasn’t studied the high emissions scenarios much until recently because they never thought humanity would be so self-destructive as to ignore their warnings for so long, which has put us on the highest emissions path (see U.S. media largely ignores latest warning from climate scientists: “Recent observations confirm … the worst-case IPCC scenario trajectories (or even worse) are being realised”—1000 ppm [A1FI]).

‘A special issue of the Philosophical Transactions of the Royal Society A, “Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications,” lays out this 4°C (7°F) world. Warming of 7ºF is certainly not the worst-case in the scientific literature (see M.I.T. doubles its 2095 warming projection to 10°F—with 866 ppm and Arctic warming of 20°F and “Our hellish future: Definitive NOAA-led report on U.S. climate impacts warns of scorching 9 to 11°F warming over most of inland U.S. by 2090 with Kansas above 90°F some 120 days a year — and that isn’t the worst case, it’s business as usual!”).

‘But for the first time, “A hellish vision of a world warmed by 4ºC within a lifetime has been set out by an international team of scientists,” as the UK’s Guardian describes it:

‘A 4ºC rise in the planet’s temperature would see severe droughts across the world and millions of migrants seeking refuge as their food supplies collapse.

‘These papers began as conference presentations . . . . In a must-read paper that is the source of the top figure, “When could global warming reach 4°C?” Betts et al. drop this bombshell:

‘”Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC’s ‘likely range’.”. . .

‘Another important Royal Society article is the concluding piece, “The role of interactions in a world implementing adaptation and mitigation solutions to climate change,” by Rachel Warren.  She makes a crucial point that is all too neglected in most discussions of adaptation — it is the interaction of impacts that is likely to overwhelm, particularly when you consider the very real risk of eco-system collapse over large parts of the Earth:

‘”… a 4°C world would be facing enormous adaptation challenges in the agricultural sector, with large areas of cropland becoming unsuitable for cultivation, and declining agricultural yields. This world would also rapidly be losing its ecosystem services, owing to large losses in biodiversity, forests, coastal wetlands, mangroves and saltmarshes, and terrestrial carbon stores, supported by an acidified and potentially dysfunctional marine ecosystem. Drought and desertification would be widespread, with large numbers of people experiencing increased water stress, and others experiencing changes in seasonality of water supply. There would be a need to shift agricultural cropping to new areas, impinging on unmanaged ecosystems and decreasing their resilience; and large-scale adaptation to sea-level rise would be necessary. Human and natural systems would be subject to increasing levels of agricultural pests and diseases, and increases in the frequency and intensity of extreme weather events.

‘”In such a 4°C world, the limits for human adaptation are likely to be exceeded in many parts of the world, while the limits for adaptation for natural systems would largely be exceeded throughout the world. Hence, the ecosystem services upon which human livelihoods depend would not be preserved. Even though some studies have suggested that adaptation in some areas might still be feasible for human systems, such assessments have generally not taken into account lost ecosystem services. . . .

‘. . . [T]here are several important articles, like “Agriculture and food systems in sub-Saharan Africa [SSA] in a 4°C+ world,” which concludes:

‘The prognosis for agriculture and food security in SSA in a 4°C+ world is bleak. Already today, the number of people at risk from hunger has never been higher: it increased from 300 million in 1990 to 700 million in 2007, and it is estimated that it may exceed 1 billion in 2010. The cost of achieving the food security Millennium Development Goal in a +2°C world is around $40–60 billion per year, and without this investment, serious damage from climate change will not be avoided. Currently, the prospects for such levels of sustained investment are not that bright. Croppers and livestock keepers in SSA have in the past shown themselves to be highly adaptable to short- and long-term variations in climate, but the kind of changes that would occur in a 4°C+ world would be way beyond anything experienced in recent times. There are many options that could be effective in helping farmers adapt even to medium levels of warming, given substantial investments in technologies, institution building and infrastructural development, for example, but it is not difficult to envisage a situation where the adaptive capacity and resilience of hundreds of millions of people in SSA could simply be overwhelmed by events. . . .

Read the whole article at Climate Progress: Royal Society special issue details ‘hellish vision’ of 7°F (4°C) world—which we may face in the 2060s!, 20 November 2010.

Scientists warn of farm failures and climate migrants in Africa in a 4-plus degree world

Maize farming in Mozambique

Smallholder maize and livestock farm in Pacassa Village, in Tete Province, Mozambique (photo credit: ILRI/Mann).

As climate change negotiations begin this week in Mexico, a new study published in the journal Philosophical Transactions of the Royal Society Series A, examining the potential impact of a four-degree temperature increase on food production in sub-Saharan Africa, reports that growing seasons of much of the region’s cropped areas and rangelands will be reduced in length by the 2090s, seriously damaging the ability of these lands to grow food.

Painting a bleak picture of Africa’s food production in a 'four-plus degree world,' the study sends a strong message to climate negotiators at a time when they are trying to reach international consensus on measures needed to keep average global temperatures from rising by more than two degrees Centigrade in this century. The study calls for concerted efforts to help farmers cope with potentially unmanageable impacts of climate change.

In most of southern Africa, growing seasons could be shortened by about 20 per cent, according to the results of simulations carried out using various climate models. Growing seasons may actually expand modestly in eastern Africa. But despite this, for sub-Saharan Africa as a whole, a temperature increase of five degrees by the 2090s is expected to depress maize production by 24 per cent and bean production by over 70 per cent.

'Africa’s rural people have shown a remarkable capacity to adapt to climate variability over the centuries,' said lead author Philip Thornton, with the Kenya-based International Livestock Research Institute (ILRI), which forms part of the Consultative Group on International Agricultural Research (CGIAR). 'But temperature increases of four degrees or more could create unprecedented conditions in dozens of African countries, pushing farmers beyond the limits of their knowledge and experience.' 

It seems unlikely that international climate policies will succeed in confining global warming to a two-degree increase, and even this will require unprecedented political will and collective action, according to the study.

Many options are already available that could help farmers adapt even to medium levels of warming, assuming substantial investment in new technology, institution building, and infrastructure development, for example. But it is quite possible that the adaptive capacity and resilience of hundreds of millions of people in Africa could simply be overwhelmed by events, say the authors.

The rate of cropping season failure will increase in all parts of the region except Central Africa, according to study results. Over a substantial part of eastern Africa, crops already fail in one out of every four years. By the 2090s, higher temperatures will greatly expand the area where crops fail with this frequency. And much of southern Africa’s rainfed agriculture could fail every other season.

'More frequent crop failures could unleash waves of climate migrants in a massive redistribution of hungry people,' said Thornton. 'Without radical shifts in crop and livestock management and agricultural policies, farming in Africa could exceed key physical and socio-economic thresholds where the measures available cease to be adequate for achieving food security or can’t be implemented because of policy failures.'

'This is a grim prospect for a region where agriculture is still a mainstay of the economy, occupying 60 per cent of the work force,' said Carlos Seré, Director General of ILRI. 'Achieving food security and reducing poverty in Africa will require unprecedented efforts, building on 40 years of modest but important successes in improving crop and livestock production.'

To help guide such efforts, the new study takes a hard look at the potential of Africa’s agriculture for adapting successfully to high temperatures in the coming decades; the study also looks at the constraints to doing so.

Buffering the impacts of high temperatures on livestock production will require stronger support for traditional strategies, such as changing species or breeds of animals kept, as well as for novel approaches such as insurance schemes whose payouts are triggered by events like erratic rainfall or high animal death rates, according to the study.

However, Thornton says that uncertainty about the specific impacts of climate change at the local level, and Africa’s weak, poorly resourced rural institutions, hurt African farmers' ability to adopt such practices fast enough to lessen production losses. Moreover, governments may not respond to the policy challenges appropriately, as demonstrated by the 2008 food crisis, when many countries adopted measures like export bans and import tariffs, which actually worsened the plight of poor consumers.

The study recommends four actions to take now to reduce the ways climate change could harm African food security.

1.     In areas where adverse climate change impacts are inevitable, identify appropriate adaptation measures and pro-actively help communities to implement them.

2.     Go 'back to basics' in collecting data and information. Land-based observation and data-collection systems in Africa have been in decline for decades. Yet information on weather, land use, markets, and crop and livestock distributions is critical for responding effectively to climate change. Africa’s data-collection systems could be improved with relatively modest additional effort.

3.     Ramp up efforts to maintain and use global stocks of crop and livestock genetic resources to help Africa’s crop and livestock producers adapt to climate change as well as to the shifts in disease prevalence and severity that such change may bring.

4.     Build on lessons learned in the global food price crisis of 2007–2008 to help address the social, economic and political factors behind food insecurity.

The CGIAR and the Earth System Science Partnership recently embarked on the most comprehensive program developed so far to address both the new threats and new opportunities that global warming is likely to cause agriculture in the world’s developing countries. The Climate Change, Agriculture and Food Security program assembles relevant experts to work with decision makers at all levels—from government ministries to farmers’ fields—to translate knowledge into effective action.

The ILRI study underlines the urgency and importance of that research. It will inform the discussions of some 500 policy makers, farmers, scientists and development experts expected to attend an ‘Agriculture and Rural Development Day’, on 4 December, which will be held alongside a two-week United Nations Conference on Climate Change taking place in Cancún, Mexico. Participants at the one-day event will identify agricultural development options for coping with climate change and work to move this key sector to the forefront of the international climate debate.

'A four-plus degree world will be one of rapidly diminishing options for farmers and other rural people,' said Seré. 'We need to know where the points of no return lie and what measures will be needed to create new options for farmers, who otherwise may be driven beyond their capacity to cope.'

For more information on the program on Climate Change, Agriculture and Food Security, visit www.ccafs.cgiar.org