India’s booming livestock sector: On the cusp?–Or on a knife edge?

Jimmy Smith and Purvi Mehta-Bhatt (left and right) with dairy farmer being interviewed by media in Haryana, India

On 4 Nov 2012, an ILRI delegation of 28 visited the village of Araipura, in the Karnal District in the Indian state of Haryana, where they held discussions with dairy farm families. Above are ILRI’s director general Jimmy Smith (left) and ILRI’s Asia program head Purvi Mehta-Bhatt (right) at a media interview of Anil K Srivastava (middle), director of India’s premier dairy research organization, the National Dairy Research Institute, based in Karnal. ILRI’s management team and board of trustees also visited the main campus at National Dairy Research Institute, at Karnal. These field visits preceded a meeting of ILRI’s board and management in New Delhi on 5–6 Nov, followed by an ILRI-ICAR Partnership Dialogue on 7 Nov 2012. (Photo credit: ILRI)

A partnership dialogue organized by the International Livestock Research Institute (ILRI) and the Indian Council of Agricultural Research (ICAR) on livestock, research and development was held yesterday (7 Nov 2012) in New Delhi.

India’s booming livestock sector
With 485 million livestock and 489 million poultry, India ranks first in global livestock population. Livestock keeping has always been an integral part of the socio-economic and cultural fabric of rural India. In recent years, India’s livestock sector has been booming. India has become the leading exporter of buffalo beef and it has turned from a milk-deficient nation into the world’s largest dairy producer, accounting for close to 17% of global production.

While the contribution of agriculture to the country’s GDP continues to fall with industrialization, the contribution of the livestock sector to India’s agricultural output only continues to increase. Livestock now contribute 28% of the output of the agricultural sector and the sub-sector is growing at a rate of 4.3% a year while that for the agricultural sector as a whole is growing at just 2.8% a year. Last year, India’s livestock sector output value was estimated to be over USD40 billion—more than all grains combined.

With over 80% of livestock production being carried out by small-scale and marginalized farmers, the benefits livestock generate for India’s poor are enormous and diverse. But while livestock are a prime force in this country’s economy and the well-being of hundreds of millions of its people, the sector has not yet been given the level of attention it warrants.

Livestock are both central to India’s development and a threat to it
Environmental impacts: While millions of people in India are benefiting from better incomes and nutrition due to livestock, there are great environmental and public health risks associated with the country’s livestock sector. For starters, India’s projected spike in demand for milk and meat—176% by 2025—will have tremendous impacts on the environment; already, for example, global livestock production accounts for up to one-fifth of human-generated greenhouse gas emissions.

Zoonotic diseases: And India’s fast-growing human population and resulting increasing animal-human interactions, combined with changing environmental conditions and inadequate sanitation and regulation, have made India one of the world’s top hotspots for livestock diseases, including zoonotic diseases—those that pass from animals to humans and which make up 75% of all human diseases. Controlling zoonoses is particularly important in developing countries, where the absolute burden of these diseases is up to 130 times greater than in rich countries. An ILRI global report released in July of this year, Mapping of Poverty and Likely Zoonoses Hotspots, ranked India near the top of the list globally for the highest burden of zoonoses—in terms of both absolute numbers of those infected with zoonoses and the level of intensity of the  zoonoses infections.

Classical swine fever, a highly contagious pig disease, poses a threat to rural farmers in India’s northeastern states of Assam, Mizoram and Nagaland—80% of whom keep pigs and 46.6% of whom identify pig farming as the most promising source of income. ILRI’s research has shown that nearly USD40 million in income is lost to the disease annually in these three states. As a result of targeted advocacy at the national ministry level, the government is allocating new funds for dealing with classical swine fever.

India’s Operation Flood, which started in the 1970s, has helped to increase national milk consumption by 30% over the last two decades. However, 80% of all sold milk is still marketed by informal traders, often perceived as unreliable, which discourages the investment into more productive animals and better inputs. What should India be doing to reach those farmers still living on the margins and who have yet to reap the benefits of India’s milk boom?

Livestock ‘goods’ and ‘bads’: The roles of livestock globally–both positive and the negative—must be better understood, particularly why researchers and policymakers must draw a distinction between the developed and developing world when it comes to the future of livestock. The current public debate on livestock is dominated by concerns of the developed world on the negative environmental and health impacts of livestock. Experts at ILRI argue that this one-sided focus can leave the poor as victims of generalizations and justify the neglect of research needed to improve the sector’s environmental performance and management of disease risks, especially in parts of the world where the benefits of livestock, which provide most poor household’s with livelihoods, regular incomes and good nutrition, outweigh its problems.

The ILRI-ICAR Partnership Dialogue
Among those who led the Partnership Dialogue from ILRI are Jimmy Smith, a global expert on livestock production for developing countries who heads up ILRI in Nairobi, Kenya, and Purvi Mehta-Bhatt, who is head of ILRI’s Asia program and based in New Delhi. All of ILRI’s international board of trustees and senior management participated in the Dialogue, as well as the director general of ICAR, the directors of ICAR’s animal science institutes and several vice chancellors and deans, with a total of 12 countries represented. The high-level meeting was inaugurated by MS Swaminathan, India’s foremost geneticist renowned for his role in India’s ‘Green Revolution’, member of India’s parliament and chairman the MS Swaminathan Research Foundation. The Dialogue was ably facilitated by S Ayyappan, director general of ICAR and secretary of the Department of Agricultural Research and Education, and KML Pathak, deputy director general of animal sciences at ICAR.

Leaders in government, non-governmental, research and private-sector organizations made presentations and three thematic sessions generated discussions on smallholder dairy and small ruminant value chains, animal health and animal feed and nutrition. A high-profile white paper will be produced from the proceedings of this dialogue to distill the major recommendations made and serve as a basis for pro-poor and sustainable livestock policy interventions in the country.

Notes
Jimmy Smith, director general of the International Livestock Research Institute (ILRI)
Jimmy Smith, a Canadian citizen, was born in Guyana, in the Caribbean, where he was raised on a small mixed crop-and-livestock farm. He was appointed director general of ILRI in April 2011. Before joining ILRI, Smith served for five years at the World Bank, leading the its Global Livestock Portfolio. Before that, Smith held senior positions at the Canadian International Development Agency (2001–2006). Earlier in his career, Smith had worked at ILRI and its predecessor, the International Livestock Centre for Africa (1991–2001). At ILCA and then ILRI, Smith was the institute’s regional representative for West Africa, where he led development of integrated research promoting smallholder livelihoods through animal agriculture and built effective partnerships among stakeholders in the region. At ILRI, Smith spent three years leading the CGIAR Systemwide Livestock Programme, an association of 10 CGIAR centres working on issues at the crop-livestock interface. Before his decade of work at ILCA/ILRI, Smith held senior positions in the Caribbean Agricultural Research and Development Institute (1986–1991), where he embarked on his career supporting international livestock for development. Smith holds a PhD in animal sciences from the University of Illinois, at Urban-Champaign, USA.

Purvi Mehta-Bhatt, head  of ILRI Asia
Purvi Mehta-Bhatt is the head of ILRI’s work in Asia and is based in New Delhi, India. Mehta-Bhatt has been involved in many capacity development, outreach and technology transfer initiatives in India and around the world and brings over 16 years of experience in designing and implementing capacity development and stakeholder networking interventions. As director of Science Ashram in India from 1997 to 2005, she worked with more than 60,000 farmers and as country coordinator for the South Asia Biosafety Program. She serves on the board of several organizations, including the International Centre for development-oriented Research in Agriculture, the International Association of Ecology and Health and the Roadmap to Combat Zoonosis in India.

Read more about the ILRI-ICAR Partnership Dialogue on ILRI’s Clippings Blog:  Lessons from India’s smallholder dairy successes can help developing world–ILRI’s Jimmy Smith, 8 Nov 2012.

Mapping the perfect storms: Where poverty, livestock and disease meet in terrible triage

The following remarks are a transcript of the second part of a presentation made last week by Delia Grace, who works at the International Livestock Research Institute (ILRI), in Nairobi. Grace, a Irish veterinary epidemiologist, leads ILRI’s research on food safety in informal markets in developing countries and on ‘zoonoses’—diseases shared by animals and people. Grace also leads a component on agriculturally related diseases of a new multi-centre CGIAR Research Program on Agriculture for Health and Nutrition, which is headed by John McDermott, former deputy director general-research at ILRI, who is now based at ILRI’s sister CGIAR institute the International Food Policy Research Institute (IFPRI), in Washington, DC, USA. Grace is also a partner in another multi-institutional initiative, called Dynamic Drivers of Disease in Africa.

A prolific writer of scientific publications and a scientist of particularly wide research interests, Grace began her ‘big-picture’ talk on zoonoses—on why, and if, they are ‘the lethal gifts of livestock’—with an overview of human health and disease at the beginning of the 21st century. Go here to read part one:  The riders of the apocalypse do not ride alone: Plagues need war, famine, destruction–and (often) livestock, ILRI News Blog, 4 Nov 2012.

Here we begin part two of this ILRI ‘livestock live talk’ presentation by Delia Grace on ‘The lethal gifts of livestock’.

Getting a handle on why zoonotic diseases matter, to whom and how much
‘So, we’ve discussed the links between livestock and disease and why livestock play such an important role in human disease. The next question we have to ask is to try and put some details on this, to put some parameters on it. So, if disease matters, and if animals have a big role in disease, what disease matters? How much? To whom? What does it cost? And what can we do about it?

‘In thinking through this, we tend to think at ILRI of different categories, which help us get more of a handle on some of the details. So we talk about the neglected zoonoses; these are the diseases like TB, brucellosis, cystercicosis—diseases that have been eradicated anywhere people have money and care, but persist—hang on—in poor countries. We talk about emerging infectious diseases—the BSEs, the SARS, the bird flus, Rift Valley fever, blue tongue—diseases that are changing their patterns and becoming more important. Then the food-borne diseases are the other big category. This is the single-most important. If you’re interested in human health and human death, food-borne diseases are the single-most important category. And finally, there are the other health risks in agro-ecosystems: How we farm and what this means for our health and nutrition.

Let the mapping begin
‘I now want to talk about some recent work we did on mapping poverty, zoonoses and emerging livestock systems in order to get a better handle on some of these questions about why it matters, who it matters to, how much it matters, and what we should or could do about it.

‘I’m going to present some work that was commissioned by DFID [the UK Department for International Development]. These were two systematic reviews that DFID asked us to do. The aim of these was to present data and expert knowledge on poverty and zoonoses hotspots in order to prioritize areas, to target areas, where prevention of zoonotic diseases can bring the greatest benefits to poor people.

‘This study took us down some interesting paths and some interesting conclusions. I’m going to talk about them in a little bit of detail.

‘So, the methods. What we wanted to do was to update global maps of poor livestock keepers. The first ever global map of poor livestock keepers was produced by ILRI around 10 or 15 years ago, again commissioned by DFID. This, I would say, was a landmark map. We also wanted to map rapidly emerging livestock systems. And here we drew a lot again on ILRI’s expertise, especially Mario Herrero’s group, which have been doing a lot of big-picture work on changes in livestock systems—what’s happening, where it’s happening and why it’s driving change. We also wanted to update one of the most iconic maps for people in the zoonoses community, and this is the map by Kate Jones on emerging infectious diseases that appeared in Nature about ten years ago (and everywhere else since).

‘We wanted to identify which were the most important zoonoses for poor people. You’d think that we’d know that, but what we find is that we have a dozen definitions and none of them agree. And then, finally, we wanted to develop the first global mapping of where zoonoses, poverty and emerging [livestock] systems come together to make hotspots, for maximum investments, for maximum bang for the buck.

Where are the poor livestock keepers?

Density of poor livestock keepers (updated 2012)

Update in 2012 by ILRI’s Delia Grace of map by ILRI’s Phil Thornton showing density of poor livestock keepers (map credit: ILRI/Philip Thornton).

‘Here is the updated map of poor livestock keepers. I think you can see by looking at it that it’s focal. The dark areas represent high density. South Asia jumps out at us. And in Africa we see the ‘magic 7’, from the coastal regions of West Africa to Nigeria and up through the highlands of Ethiopia and right down the Rift Valley through Uganda and northern Tanzania and right down to Malawi.

‘So what can we say in our updating of poor livestock keepers?

One billion poor livestock keepers depend on 19 billion livestock. Most of the livestock in the world are owned by poor people: 24 billion in total in the world and 19 billion in poor countries. That’s a lot of opportunities for disease to spill over, 19 billion animals.

What’s more, the ‘parietal law’, the law of ‘the vital few and the trivial many’, applies. Just 4 countries have 44 per cent of poor livestock keepers. All countries are not equal.

‘Livestock matter a lot: 75% of rural people, and 25% of urban people, depend on livestock. Now ‘depend’ is one of those weasel words that we keep being asked to shine more light on. We don’t know enough—it’s amazing how little we know despite how important this is—but our best guess for now is that when we say ‘depend’ we mean that livestock contribute between 2 and 33% of household income and 6 to 36% of protein. It’s not trivial.

Where are the fast-evolving livestock production systems?

Change in poultry production
Change in pig production
2012 maps showing changes in poultry and pig production between 2000 and 2030 (map credit ILRI/Delia Grace).

‘The second map we updated was these emerging livestock systems. As we suspected, most emergence is happening in the monogastrics, the pigs and the poultry. And of course this has been known since the landmark papers on the livestock revolution. Our maps confirm this; we’re getting a lot of change in pigs and poultry, and again it’s focal; you can see that it’s not uniform.

‘So in summary, where are we getting massive, rapidly changing systems? Big changes in numbers? Big changes in baselines? Where do we have people who don’t have a lot of experience doing this sort of farming now doing it in a big way? (Once you get naïveté along with massive intensification, you get problems.)

Poultry in several places on all continents, bovines in South and East Asia, and pigs in sub-Saharan Africa. These are the rapidly emerging livestock systems.

Where are the emerging infectious diseases?
‘Next, we updated the emerging infectious diseases map. This was a study that was originally done by Jones et al. based on all emerging diseases from 1940 to 2004. What we wanted to do was to focus just on zoonotic diseases (the 75% of all human disease that are zoonotic) and also to update it with data from 2004 to 2012.

Emerging Zoonotic Diseases Events 1940-2012

Map by IOZ, published in an ILRI report to DFID; Mapping of Poverty and Likely Zoonoses Hotspots 2012.

‘All of these dots represent new, potentially scary, diseases. The bigger the dot, the more the outbreaks. The new diseases are the blue circles; they are the ones that happened in the last ten years. The brown are the old; those are the ones that happened in the 70 years before. Again you can see a pattern here, but it’s not the same pattern we saw in the other map.

‘What we see is that western USA and western Europe are the hotspots for disease emergence. There’s a reporting bias in here, but we believe that this is not just reporting bias but actually represents emerging events. Interestingly, the blue events, the new events, are more common in South America and Southeast Asia, as intensification takes off in these regions and start to look more like intensive [livestock] systems of the West.

Multiple disease burdens are ‘where it’s at’
‘So, what are the high-priority zoonoses? We were interested in multiple [disease] burdens. One of the things we believe leads to bad management of zoonoses is that it’s done sectorally; it falls between lots of chairs. The World Health Organisation thinks about the human burden. The United Nations Food and Agriculture Organization thinks about the animal burden. Other people think about the wildlife burden. But people too rarely get together and think about the multiple burden.

What isn’t measured isn’t managed. And we think that one great step forward is just having people think about multiple burdens. So our listing, our criteria, consists of looking at the burdens across human health, animal health and ecosystems health.

‘From lots of listings, we assessed 56 zoonoses and found that together they caused a lot of problems. But the ones that were most important tended to have a wildlife interface, had a major impact on livestock and were amenable to on-farm agricultural interventions.

Top zoonoses calculated by ILRI's Delia Grace in 2012

Slide of ‘top zoonoses’ from ‘livestock live talk’ presentation, ‘Zoonoses: The Lethal Gifts of Livestock’, made by Delia Grace on 31 Oct 2012.

‘Just to give you some idea of the numbers, there are about 600 zoonoses and we looked at the top 50. Of that top 50, this is the human death caused by the top 13 and that by the next 43. Again, I think you can see it’s a case of the vital few and the trivial many. If you’ve got scarce resources and care about human death, you invest in the top 13, not in the bottom 43.

And here it is just broken out by individual zoonoses, and even in that top 13, you can see that there’s a difference between big killers and little killers. And sometime the ones we hear most about—and worry most about—are the ones that kill least.

‘The first thing we did then was to go to official reporting systems to try to find out where these zoonoses were and how these linked to the other things we were mapping. There are several reporting systems. There’s one by OIE [World Organisation for Animal Health], which is ‘notifiable’, that is, every OIE member has to report all their animals that die of notifiable diseases (you’d think that was easy enough). There’s also one run by FAO, and there’s Pro Med, there’s GEWS, and there’s Health Map, which is an aggregator.  That a picture of Health Map, and it’s a pretty exciting innovation. A ‘bot’ trawls the web and captures all the information on diseases.

When we put all of these [official disease reporting systems] together, what we found was that they were completely useless. They told us almost nothing about the burden of diseases. They told us about exciting things, interesting things. When a kid in Buenos Aires got bitten by a rabid dog, that showed up here. But when we were interested in what is sickening and killing billions and millions of people, it was just hopeless.

‘Just to give you an example, Africa has about 250 million tropical [aggregated] livestock units; we know that around 25 million of them die prematurely every year. We estimate around half of those deaths are due to notifiable diseases. There are over 60 notifiable diseases and pretty much everything falls into these. And what’s reported? Say 10 million dead, 80,000 reported.

This isn’t just under-reporting; this is a reporting system that is not very helpful!

‘So we couldn’t use the official reports. And it’s a huge weakness. People go along blindly and mechanically collecting this data, sending it in to OIE, doing complicated analyses showing all the different effects and impacts of these diseases, but they fail to take into account that they’re only looking at the 80,000 that are reported, and not the 920,000 that are not reported. It’s sort of an exercise in futility.

‘So what we did instead was a systematic literature review. We found that the only way we could get some sort of handle on where these zoonoses are was just to keep looking through the literature, pulling it out—grey, white, published, local language—and get as many surveys as we could and geographically map them and see what they are doing. In fact, we got over a thousand studies, which was enough to get some sort of a spatial understanding.

Greatest Burden of Zoonoses Falls on One Billion Poor Livestock Keepers

Map by ILRI, published in an ILRI report to DFID: Mapping of Poverty and Likely Zoonoses Hotspots, 2012.

‘This is what we came up with. Where you see a dot is where 1 or more people or animals in 100 are affected by 1 or more diseases per year. At least a 1%, at least 1 in 100 are sickened or killed. The dark colour shows where the poor livestock keepers are. Again, you can see the ‘7’ in Africa, whereby the zoonoses are linked to the poor livestock keepers. You can see quite a bit in South Asia and some in Southeast Asia.

‘There is a definite link between livestock keeping and poverty, which is what we suspected, but here again there is a lot of under reporting.

An unlucky 13 zoonoses sicken 2.4 billion people and kill 2.2 million people and they affect more than 1 in 7 livestock each year. These numbers are not trivial. These are large numbers, large numbers of sickness and death.

Our zoonotic problems are big problems

Multiple burdens of zoonoses calculated by ILRI's Delia Grace in 2012

Slide of ‘multiple burdens of zoonoses’ from ‘livestock live talk’ presentation, ‘Zoonoses: The Lethal Gifts of Livestock’, made by Delia Grace on 31 Oct 2012.

‘As I said, we focused on multiple burdens of  zoonoses, and here are some. I won’t read through them in detail, but again, going across all of these surveys, the numbers are frighteningly high. Round about 10% of animals have brucellosis, which is a serious disease in people, causing ungulant fever, infertility in men; it can cause psychosis and depression. And it’s transmitted in milk. If you don’t boil your milk, 1 in 10 animals has brucellosis. Ten per cent of animals in Africa have tryps [African animal trypanosomiasis], reducing their productivity by 15%. With 250 million livestock units, say they’re worth USD500 each, and you reduce their productivity by 15%—we’re talking large numbers here. TB, cysticercosis, bacterial food-borne disease, all of these came up.

‘The bad news is that it’s there and it’s a big problem in animals as well as people. The good news, of course, is that this provides incentive-based ways of tackling some of these zoonoses. Because if you can manage your animal zoonoses and boost your productivity by 10 or 20%, there’s a strong incentive for you to do it. What we’ve found with these studies (and we’ve been doing a lot of them over the years), is that too often the human health attitude is that people should do this because it’s good. You should do it to protect your own health. You should do it to protect the consumer’s health. That is one of the weakest motivations of all. How many things do we not do even though we know they’re good for our health? And how many fewer things do we do if they’re not good for our health but they’re good for someone else’s health?

Give people incentives, not rules, to better manage disease
‘What we find in these informal markets, where regulation is a joke and you have a hundred vets in a country and a hundred million animals, there’s no point in regulations or officials telling people “You should do this because it’s good for you”. It has to be incentive-based. People have to see a real benefit from changing their behaviour, either in their pocket or in their social status. And it doesn’t have to be money. We found people will change their behaviour just as much if they can get a social kick out of it. If instead of being a low-status person they get to be a high-status person, they’ll change their behaviour.

‘So, in summary what did we find? There are definite [zoonotic] hotspots, which is good, because that’s what the donor wanted  because that’s where the donor wants to invest. This is also a nice example of how science can generate evidence that is asked for by a donor and then influences donor behaviour, so it’s a virtuous cycle.

Where the ‘perfect storms’ lie
‘Poor livestock keepers? South Asia is the biggest. Emerging livestock systems? Again, South Asia. Zoonotic emerging infectious diseases? Western Europe and USA. Zoonoses? South Asia and central and eastern Africa.

If we are to name six countries where all of these come together, where you get the ‘perfect storm’ conditions, they are India, Bangladesh and Pakistan in Asia; Ethiopia, Nigeria and Congo in Africa.

‘So we’ve talked a bit about the big picture, human health and disease in the 21st century and why livestock matter. I’ve presented some of these findings of our mapping studies trying to get some evidence: the evidence that decision-makers want in a format they can use, in a way that motivates them to invest money.

‘But now, finally, I want to talk a bit about how we move from mapping to managing. . . .’

Notes
This ends part two of the seminar by Delia Grace. Look on this ILRI News Blog for part three in a couple of days’ time.

Part one of this seminar is here: The riders of the apocalypse do not ride alone: Plagues need war, famine, destruction–and (often) livestock, ILRI News Blog, 4 Nov 2012.

View the slide presentation, which is a ‘slidecast’ that includes an audio file of the presentation by Grace: Zoonoses: The lethal gifts of livestock, an ILRI ‘livestock live talk’ by Delia Grace at ILRI’s Nairobi headquarters on 31 Oct 2012.

Read the invitation to this ILRI ‘livestock live talk’, and sign up here for our RSS feed on ILR’s Clippings Blog to see future invites to this new monthly seminar series.

The riders of the apocalypse do not ride alone: Plagues need war, famine, destruction–and (often) livestock

Albrecht Dürer

a presentation made last week by Delia Grace, who works at the International Livestock Research Institute (ILRI), in Nairobi. Grace, a Irish veterinary epidemiologist, leads ILRI’s research on food safety in informal markets in developing countries and on ‘zoonoses’—diseases shared by animals and people. Grace also leads a component on agriculturally related diseases of a new multi-centre CGIAR Research Program on Agriculture for Health and Nutrition, which is headed by John McDermott, former deputy director general-research at ILRI, who is now based at ILRI’s sister CGIAR institute the International Food Policy Research Institute (IFPRI), in Washington, DC, USA. Grace is also a partner in another multi-institutional initiative, called Dynamic Drivers of Disease in Africa.

A prolific writer of scientific publications and a scientist of particularly wide research interests, Grace began her ‘big-picture’ talk on zoonoses—on why, and if, they are ‘the lethal gifts of livestock’—with an overview of human health and disease at the beginning of the 21st century.

'livestock live talk' 31 Oct 2012: Delia Grace listens to a question

Regarding diseases, it’s not the past we have to worry about, says ILRI scientist Delia Grace; it’s the diseases we’re picking up and the lifestyle choices we’re making (picture credit: ILRI/Susan MacMillan).

‘At the moment we are 7 billion people and by 2050, we’ll probably be 9 billion.

To date, farming is not doing a very good job of feeding us or looking after our health. We have 1 billion people who are hungry, 2 billion people who suffer from ‘hidden hunger’, or micronutrient deficiencies (iron, vitamins, minerals), and we 1.5 billion people who are overweight or obese. All in some ways functions of a dysfunctional agricultural system.

‘Not only does agriculture have an important role in nutrition, it also has an important role in health. And that’s going to be the main topic of my presentation.

‘But a few facts here just to get us in the mood.

‘Of our 7 billion people, 55 million die each year; 18 million die of infection. That’s preventable—there’s no reason now why anyone should die of an infectious disease. But to put that in perspective, there are lots of other preventable things that also kill people: 1.2 million people die each year in road traffic accidents, 170,000 from fatal agricultural accidents and 22,000 (and rising) from extreme weather events.

‘Of those people who die each year . . . two-thirds live in middle-income countries and most of those people die of lifestyle-associated diseases (cardio-vascular/chronic). About a sixth of those who die each year die in high-income countries, and most of them die from being just too old—they die from things like Alzheimer’s and stroke and cardiac disease, things that often come at the end of a life. And then there are the one-sixth who die in low-income countries, and what they die of are the ‘preventables’, mainly infectious diseases.

So, where do these infectious diseases come from? When we look at diseases as a whole, we can see that most are ‘earned’. The wages of sin may be death but the wages of lifestyle choice is disease.

‘The major causes of disease on this planet are the choices we make or the choices that are forced upon us: degenerative diseases, cardiac diseases, diabetes, stroke, cancer. Allergies and asthmas, which are probably reflections of a lifestyle that was not the way we were evolved to live. Those diseases are not the focus of this discussion.

‘What we are focusing on are the “souvenirs”, the diseases we pick up from other sources. And those sources are pretty much animals. Around 60 per cent of all human diseases are shared with animals, and of the new and emerging diseases, 75 per cent are “zoonotic”, that is, they come from animals. What’s more, of the 18 million people who die of infectious diseases each year, two of the biggest killers are zoonotic, or jumped from animals to people.

‘One thing that distinguishes the “souvenir” diseases is that many of these are diseases that kill people when they are young or in the prime of their life, when they have a future ahead of them.

We’re all going to die—that’s one thing that’s fairly inevitable. If we want to spend scarce resources doing something about making our planet more healthy and productive, it makes sense to invest in the souvenirs, the diseases we’ve acquired rather than these end-of-life diseases, about which nothing much can be done.

‘In fact, some economists argue it’s cheaper to let people die once they’ve reached a certain age than it is to invest in trying to make them better, because they’re not going to contribute much more to society.

The diseases that don’t matter so much we call the ‘legacies’. These are the diseases that have always been with us, the diseases that humans brought with them in their evolution from non-human primates. It’s interesting to see that these diseases (e.g., staph, lice, typhoid) are pretty much conquered. So it’s not the past we have to worry about; it’s what we’re picking up and the choices we’re making.

'livestock live talk' 31 Oct 2012: Richard Bishop asks Delia Grace a question

ILRI scientist Richard Bishop asks Delia Grace a question following her ‘livestock live talk’ on 31 Oct 2012 in Nairobi on the subject of ‘Zoonoses: The lethal gifts of livestock’ (photo credit: ILRI/Susan MacMillan).

‘So, how do these diseases get from animals into people, these 60 per cent of diseases that we share with animals? “Spillover” is the word. Here we see what we call an epidemiological or sylvatic cycle. That’s a little pathogen living in a kind of equilibrium with its wild host. By the usual evolutionary rules, once these pathogens have been living a long time with their hosts, they tend to co-evolve so that they get a little less malignant. Otherwise, if the pathogen kills all its hosts, it’s not good for its long-term survival. So what you tend to get are complex pristine ecosystems with lots of hosts and lots of pathogens, all in an evolutionary race but all staying in a relative status quo.

‘Once you bring in humans, you can get spillover. Once humans start coming into these pristine ecosystems and start messing with them—start killing lots of animals or butchering game meat or doing other things that happen when people invade pristine ecosystems—some of these pathogens can spill over into humans. What tends to happen when they first spill over is that they’re not adapted to humans: they kill them and that’s it. That’s what we tend to see with the ebola and marburg viruses; you’ve heard about these in Uganda. They spill over, they kill, that’s it. But if they get lots and lots of opportunities to spill over to people, evolution starts kicking in, too, and they now have got a new host, a new lease, so they’re going to start being able to be transmitted more readily, from human to human.

‘The other thing that can happen in these sylvatic cycles is the spillover can occur into livestock. This can be expected. Humans have contacts with wild animals, but livestock have many more. So we often see that livestock can act as a sort of bridge to bring these wild animal diseases into people. And that’s what we see with diseases such as the Nipah virus, diseases such as avian influenza and Rift Valley fever. The host is out there somewhere in the wild; often we don’t know where it is. It’s shocking to say: we still aren’t sure where the host for Rift Valley fever is, we just don’t know. But we know it gets into livestock, and from livestock it gets into people. People can be a dead-end host—the virus can get in, sicken and kill and that’s it—or the virus can gradually start adapting to humans.

‘Some of the factors that can help this transition are increasing the densities, increasing the contacts, increasing the amount of pathogen in the environment, but also other things like habitat change, biodiversity, vector density, host density.

I would argue—this is a little bit provocative and not everyone would agree—that spillovers happen all of the time and most of the time just aren’t any big deal. A lot of the present effort to control emerging infectious diseases is perhaps not well directed because we’re dealing with problems that are intrinsically self-limiting. However, when you look back at history, in order for a spillover to become a disaster—in order for a spillover to become a pandemic, a civilization-altering disease—you need something else. I think this missing ingredient is great societal dislocation.

‘And that’s what history shows. The first big transition was the Neolithic transition. I’m going to come back to that because it’s important. Other examples, from the 13th to the 15th centuries, Europe went through a little Ice Age—we talk about climate change making it hotter today; then, it got colder. People got hungry, people, starved, people moved; you got Black Death and it killed one in three.

‘When they opened up the New World and when people came to the Americas, something like 90 per cent of the population died in the Americas, from smallpox, from measles. This is what we call ‘virgin soil’ epidemics; people who had no immunity; why? because they hadn’t hung out with livestock for long enough, according to some people, so people just died in droves.

‘But it wasn’t just a disease—it was the collapse of their society, the collapse of a highly advanced, highly stable, highly functioning society. It was destroyed from the outside and the disease came in.

The riders of the Apocalypse do not ride alone. Plague by itself needs war, needs famine, needs destruction.

‘We saw the same in the First World War, with the trenches and that massive societal misery, which led to Spanish flu and 40 million dying, and colonialization and urbanization in Africa in the early 20th century leading to HIV.

Disease spillover + societal dislocation = pandemic

Slide from ‘livestock live talk’ by Delia Grace on 31 Oct 2012 (slide by ILRI/Delia Grace).

 

‘Some argue and some spend millions of dollars hearing that we are about to enter a new time of unprecedented societal dislocation. As we get massive population increases, massive climate change, massive global destruction, we’re in for another big plague.

‘Let’s look at the first epidemiological transition, just to take us back to history and to show how domestication leads to disease. The first [animal we domesticated] was the dog [15,000–30,000 BC], and some would argue that the dog domesticated us, and the last was the goose (1,500 BC), and anyone who has been chased around a farm by a goose knows that they are as yet imperfectly domesticated!

But between the dog and the goose, there’s been a long range of domestication and the animals brought disease with them, diseases we tend to think of as human diseases; measles, mumps, diptheria, flu, smallpox, they all jumped from animals, many of them from livestock.

Disease and livestock domestication

Slide from ‘livestock live talk’ by Delia Grace on 31 Oct 2012 (slide by ILRI/Delia Grace).

 

‘And of course this is a dynamic: once they jumped in they can jump back; other diseases jumped from people to livestock, and once they were in the livestock, they came back again.

‘So that was the link between livestock and disease and why livestock play such an important role in human disease.

‘The next question we have to answer is to try and put some details on this, try and put some parameters on it. If disease matters, and if animals play a big role in disease, what disease matters? how much? to whom? what does it cost? what can we do about it? . . .’

This ends part one of this ILRI ‘livestock live talk’ presentation by Delia Grace on ‘The lethal gifts of livestock’. Check back here tomorrow for part two.

Read the invitation to this ILRI ‘livestock live talk’, and sign up here for our RSS feed on ILR’s Clippings Blog to see future invites to this new monthly seminar series.

View the slide presentation: Zoonoses: The lethal gifts of livestock, an ILRI ‘livestock live talk’ by Delia Grace at ILRI’s Nairobi headquarters on 31 Oct 2012.

Livestock in the city: New study of ‘farm animals’ raised in African cities yields surprising results

Urban zoonoses and food safety: Nairobi

Leonard Gitau, a small-scale livestock farmer in Dagoretti, Nairobi, speaks to journalists during a media tour by ILRI of urban farmers in Nairobi on 21 Sep 2012 (photo credit: ILRI/Paul Karaimu).

For the first time in history, more people are living in cities than rural areas. Many of them still keep livestock. At least 800 million people in cities in developing countries practice urban agriculture, from growing vegetables to keeping camels—often in close confinement in densely populated areas.

The benefits of urban livestock keeping are many: from improved food security, nutrition and health from livestock products, creation of jobs and protection from food price volatility. But the risks in urban livestock are also large: unsanitary conditions and weak infrastructure mean that livestock can be a source of pollution and disease.

‘Zoonoses’, diseases transmitted between animals and people, are a global health problem that particularly affects the poor in developing countries. A new study by the International Livestock Research Institute (ILRI) and partners finds that zoonoses and diseases recently emerged from animals make up 26% of the infectious disease burden in low-income countries, but just 0.7% of the infectious disease burden in high-income countries.

The study, published in the journal Tropical Animal Health and Production, which was led by University of Nairobi and ILRI, is part of a series of papers that examine the facts and fiction of urban livestock keeping. The researchers note the need for evidence in the planning and practice of urban food systems and the danger of relying on perceptions or models taken from different contexts.

Here are some of the results of the study.

LOTS OF URBAN LIVESTOCK
Much more livestock is being raised in the urban areas of developing countries than most people (and policymakers) think.

THE DISEASE RISK
Domestic as well as wild animals can spread many, and some very serious, diseases to people and it is a reasonable assumption that as the population of urban areas of these and other developing countries continues to increase, the risk of zoonoses also increases.

THE GOOD NEWS
This recent in-depth study of urban zoonoses in urban environments in Nigeria and Kenya suggests that the human disease risk posed by raising, processing, marketing and/or consuming livestock in cities, city suburbs and big towns in developing countries is less than we might think.

SUPPORT INFORMAL MARKETS
Rather than bar poor people from livestock enterprises in urban areas in an attempt to protect public health, which could do the poor more harm than good, this study suggests that a more practical and equitable course is to work to enhance practices in small-scale urban livestock raising and informal livestock marketing by encouraging poor livestock producers, processors and sellers to upgrade some of their practices.

PROVIDE INCENTIVES FOR GOOD BEHAVIOUR
This study included participatory work with the local communities, and an important outcome has been the success achieved by creating incentives for the poor to improve their livestock practices rather than trying to strictly regulate these informal livestock markets, or harass the people involved, or bar them from operating altogether.

DISEASE RISKS ARE NOT WHAT WE THINK
Another important finding is that people are not the good judges of risks that they think they are; most people, including food safety officials, think that livestock foods, being so perishable, carry the greatest risk of disease in informal urban markets, but studies have shown that, for example, city vegetables are often a greater cause of disease concern than milk and meat.

TRACKING PATHOGENS AND RELATED ILRI RESEARCH
This research project was conducted jointly with the University of Nairobi, whose Professor Erastus Kang’ethe led the data collection and participatory work within Kenya, with the support of the Kenyan government and health officials. This project also expands ILRI’s long-standing research on informal dairy markets in East Africa and South Asia, led by ILRI scientist Amos Omore and others, which helped to refine dairy policies to support rather than harass sellers of ‘raw’ (unpasteurized) milk. And a new ILRI research project led by ILRI scientist Eric Fevre will investigate zoonoses further by tracking disease pathogens as they move among farms, processors and markets in Nairobi.

Urban zoonoses and food safety: Nairobi

ILRI scientist Delia Grace is interviewed by BBC and AllAfrica.com before the start of a journalist tour of urban livestock farmers in Nairobi that ILRI organized on 21 Sep 2012 (photo credit: ILRI/Paul Karaimu).

Delia Grace, an ILRI veterinary epidemiologist and leader of a component of the CGIAR Research Program on Agriculture for Nutrition and Health, was the principal investigator in the Ibadan-Nairobi zoonoses study and editor of this special edition of Tropical Animal Health and Production. Grace says that regulations that work for rich countries do not always work for poor countries, and that policies should follow a risk-based approach where decision-makers’ focus is not the bugs present in food but the likely effects on human health. ‘The risks of food-borne diseases’, she says, ‘need also be weighed against the economic benefits and nutrition abundantly supplied by animal products.’

In the absence of evidence, policies are based on the prejudice that urban livestock keeping is unsafe and unmodern, and it is often banned outright. Of course it continues behind hedges and in back alleys, but the imposed illegality drives a rush to the bottom in hygienic practices and investments. When farmers are harassed by authorities and operate in a legal grey area, they have little access to the support they need and little incentive to invest in business improvements.

Thanks in part to previous research on the benefits of urban agriculture, the Government of Kenya has been proactive in posting veterinary, animal production, and crop personnel in major urban centers to lead from the front in championing the development of urban agriculture. The government has also led in the development of the urban agriculture and livestock policy. Involving these civil servants has been key in enabling our research in urban agriculture. This is a good example of government changing its policy to better meet the needs of citizens.

Rapid urbanization, and along with it the urbanization of poverty and food insecurity, raises urgent challenges for the global research and development community. Among them is the need to manage the growing risks of zoonosis associated with urban farming and to improve food safety for the one billion of the world’s poor living in cities, most of whom depend on informal markets instead of more formal government-organized markets or grocery stores.

Informal, or wet markets, exist in many different forms across Africa and Asia but have common characteristics: food escapes effective health and safety regulation; many retailers do not pay tax and some are not licensed; traditional processing, products and retail practices predominate; infrastructure such as water, electricity, sanitation, and refrigeration is lacking; and little support is provided from the public or non-governmental sector. Unsurprisingly, women and the poor are involved most in informal markets.

Applying an innovative research approach known as ‘ecohealth’, the findings of this research contradict some basic assumptions about zoonoses and urban farming and show how livestock keepers in one of Africa’s biggest cities, Nairobi, Kenya, are transforming their livestock and public health practices to combat disease and help feed a city where 60% of the population lives in slums.

But what does it mean in practice? A special edition of 11 papers sets out how ecohealth approaches can make a difference to city health. The researchers base their findings from two case studies. One is in Dagoretti, a Nairobi district of some 240,000 residents, and analyzes the emerging zoonoses cryptosporidiosis, a diarrhoeal disease that is passed from cattle to humans.

For further information

See a Factsheet on Urban Agriculture and Zoonoses in Nairobi, which provides key facts about urbanization, urban livestock keeping and the study in Dagoretti, where most residents are poor and many raise livestock inside city limits.

Read the special supplement of the August 2012 issue of the journal Tropical Animal Health and Production on assessing and managing urban zoonoses and food-borne disease in Nairobi and Ibadan.

Featured in the special supplement are the following 10 research articles by scientists from the International Livestock Research Institute (ILRI) and partners from the Kenya Agricultural Research Institute (KARI), the Kenya Ministry of Agriculture, the Federal University of Agriculture, Abeokuta, the University of Ibadan and the University of Nairobi.

Click on the links below to read the abstracts of the articles (ILRI authors in burgundy; journal subscription required for access to full text).

New ILRI study maps hotspots of human-animal infectious diseases and emerging disease outbreaks

Greatest Burden of Zoonoses Falls on One Billion Poor Livestock Keepers

Map by ILRI, published in an ILRI report to DFID: Mapping of Poverty and Likely Zoonoses Hotspots, 2012.

A new study maps hotspots of human-animal infectious diseases and emerging disease outbreaks. The maps reveal animal-borne disease as a heavy burden for one billion of world’s poor and new evidence on zoonotic emerging disease hotspots in the United States and western Europe.

The new global study mapping human-animal diseases like tuberculosis (TB) and Rift Valley fever finds that an ‘unlucky’ 13 zoonoses are responsible for 2.4 billion cases of human illness and 2.2 million deaths per year. The vast majority occur in low- and middle-income countries.

The study, which was conducted by the International Livestock Research Institute (ILRI), the Institute of Zoology (UK) and the Hanoi School of Public Health in Vietnam, maps poverty, livestock-keeping and the diseases humans get from animals, and presents a ‘top 20’ list of geographical hotspots.

From cyst-causing tapeworms to avian flu, zoonoses present a major threat to human and animal health,’ said Delia Grace, a veterinary epidemiologist and food safety expert with ILRI in Kenya and lead author of the study. ‘Targeting the diseases in the hardest hit countries is crucial to protecting global health as well as to reducing severe levels of poverty and illness among the world’s one billion poor livestock keepers.’

‘Exploding global demand for livestock products is likely to fuel the spread of a wide range of human-animal infectious diseases,’ Grace added.

According to the study, Ethiopia, Nigeria, and Tanzania in Africa, as well as India in Asia, have the highest zoonotic disease burdens, with widespread illness and death. Meanwhile, the northeastern United States, Western Europe (especially the United Kingdom), Brazil and parts of Southeast Asia may be hotspots of ’emerging zoonoses’—those that are newly infecting humans, are newly virulent, or have newly become drug resistant.

The study examined the likely impacts of livestock intensification and climate change on the 13 zoonotic diseases currently causing the greatest harm to the world’s poor.

The report, Mapping of Poverty and Likely Zoonoses Hotspots, was developed with support from the United Kingdom’s Department for International Development (DFID). The goal of the research was to identify areas where better control of zoonotic diseases would most benefit poor people. It also updates a map of emerging disease events published in the science journal Nature in 2008 by Jones et al.[i]

Remarkably, some 60 per cent of all human diseases and 75 per cent of all emerging infectious diseases are zoonotic.

Among the high-priority zoonoses studied here are ‘endemic zoonoses’, such as brucellosis, which cause the vast majority of illness and death in poor countries; ‘epidemic zoonoses’, which typically occur as outbreaks, such as anthrax and Rift Valley fever; and the relatively rare ’emerging zoonoses’, such as bird flu, a few of which, like HIV/AIDS, spread to cause global cataclysms. While zoonoses can be transmitted to people by either wild or domesticated animals, most human infections are acquired from the world’s 24 billion livestock, including pigs, poultry, cattle, goats, sheep and camels.

Poverty, zoonoses and markets
Today, 2.5 billion people live on less than USD2 per day. Nearly three-quarters of the rural poor and some one-third of the urban poor depend on livestock for their food, income, traction, manure or other services. Livestock provide poor households with up to half their income and between 6 and 35 per cent of their protein consumption. The loss of a single milking animal can be devastating to such households. Worse, of course, is the loss of a family member to zoonotic disease.

Despite the danger of zoonoses, the growing global demand for meat and milk products is a big opportunity for poor livestock keepers.

Increased demand will continue over the coming decades, driven by rising populations and incomes, urbanization and changing diets in emerging economies,’ noted Steve Staal, deputy director general-research at ILRI. ‘Greater access to global and regional meat markets could move  millions of poor livestock keepers out of poverty if they can effectively participate in meeting that  rising demand.’

But zoonoses present a major obstacle to their efforts. The study estimates, for example, that about one in eight livestock in poor countries are affected by brucellosis; this reduces milk and meat production in cattle by around 8 per cent.

Thus, while the developing world’s booming livestock markets represent a pathway out of poverty for many, the presence of zoonotic diseases can perpetuate rather than reduce poverty and hunger in livestock-keeping communities. The study found a 99 per cent correlation between country levels of protein-energy malnutrition and the burden of zoonoses.

Many poor livestock keepers are not even meeting their own protein and energy needs’, said Staal. ‘Too often, animal diseases, including zoonotic diseases, confound their greatest efforts to escape poverty and hunger.’

Assessing the burden of zoonoses
The researchers initially reviewed 56 zoonoses that together are responsible for around 2.5 billion cases of human illness and 2.7 million human deaths per year. A more detailed study was made of the 13 zoonoses identified as most important, based on analysis of 1,000 surveys covering more than 10 million people, 6 million animals and 6,000 food or environment samples.

The analysis found high levels of infection with these zoonoses among livestock in poor countries. For example, 27 per cent of livestock in developing countries showed signs of current or past infection with bacterial food-borne disease—a source of food contamination and widespread illness. The researchers attribute at least one-third of global diarrheal disease to zoonotic causes, and find this disease to be the biggest zoonotic threat to public health.

In the booming livestock sector of developing countries, by far the fastest growing sectors are poultry and pigs.

As production, processing and retail food chains intensify, there are greater risks of food-borne illnesses, especially in poorly managed systems’, said John McDermott, director of the  CGIAR Research Program on Agriculture for  Nutrition and Health, led by the International Food Policy Research Institute (IFPRI). ‘Historically, high-density pig and poultry populations have been important in maintaining and mixing influenza populations. A major concern is that as new livestock systems intensify, particularly small- and medium-sized pig production, the more intensive systems will allow the maintenance and transmission of pathogens. A number of new zoonoses, such as Nipah virus infections, have emerged in that way.’

 

Emerging Zoonotic Diseases Events 1940-2012

Map by Institute of Zoology (IOZ), published in an ILRI report to DFID: Mapping of Poverty and Likely Zoonoses Hotspots, 2012.


Intensification and disease spread
The most rapid changes in pig and poultry farming are expected in Burkina Faso and Ghana in Africa and India, Myanmar and Pakistan in Asia. Pig and poultry farming is also intensifying more rapidly than other farm commodity sectors, with more animals being raised in more concentrated spaces, which raises the risk of disease spread.

Assessing the likely impacts of livestock intensification on the high-priority zoonoses, the study found that livestock density is associated more with disease ‘event emergence’ than with overall disease burdens. Both the northeastern United States and Western Europe have high densities of livestock and high levels of disease emergence (e.g., BSE, or ‘mad cow’ disease, and Lyme disease), but low numbers of people falling sick and dying from zoonotic diseases. The latter is almost certainly due to the relatively good disease reporting and health care available in these rich countries.

Bovine tuberculosis is a good example of a zoonotic disease that is now rare in both livestock and human populations in rich countries but continues to plague poor countries, where it infects about 7 per cent of cattle, reducing their production by 6 per cent. Most infected cattle have the bovine form of TB, but both the human and bovine forms of TB can infect cows and people. Results of this study suggest that the burden of zoonotic forms of TB may be underestimated, with bovine TB causing up to 10 per cent of human TB cases. Human TB remains one of the most important and common human diseases in poor countries; in 2010, 12 million people suffered from active disease, with 80 per cent of all new cases occurring in 22 developing countries.  

Massive underreporting

We found massive underreporting of zoonoses and animal diseases in general in poor countries’, said Grace. ‘In sub-Saharan Africa, for example, 99.9 per cent of livestock losses do not appear in official disease reports. Surveillance is not fulfilling its purpose.’

The surveillance lacking today will be even more needed in the future, as the climate changes, she added. Previous research by ILRI and others indicates that areas with increased rainfall and flooding will have increased risk of zoonoses, particularly those diseases transmitted by insects or associated with stagnant water or flooding.

The main finding of the study is that most of the burden of zoonoses and most of the opportunities for alleviating zoonoses lie in just a few countries, notably Ethiopia, Nigeria, and India. These three countries have the highest number of poor livestock keepers, the highest number of malnourished people, and are in the top five countries for both absolute numbers affected with zoonoses and relative intensity of zoonoses infection.

‘These findings allow us to focus on the hotspots of zoonoses and poverty, within which we should be able to make a difference’, said Grace.

Read the whole report: Mapping of poverty and likely zoonoses hotspots, report to the UK Department for International Development by Delia Grace et al., ILRI, Institute of Zoology, Hanoi School of Public Health, 2012.

Read about the report in an article in NatureCost of human-animal disease greatest for world’s poor, 5 Jul 2012. Nature doi:10.1038/nature.2012.10953

 


[i] Nature, Vol 451, 990–993, 21 February 2008, Global trends in emerging infectious diseases, Kate E Jones, Nikkita G Patel, Marc Levy, Adam Storeygard, Deborah Balk, John L Gittleman and Peter Daszak.

Animal plagues: ‘The lethal gift of livestock’

List of reported bird flu outbreaks, May 11 through August 27, 2005

List of reported bird flu outbreaks from 11 May through 27 August 2005 (map on Flickr by Brooke Ganz/Asparagirl).

Two veterinary epidemiologists working at the International Livestock Research Institute (ILRI) recently published a fascinating look at the state of ‘livestock plagues’ that can, and regularly are, transmitted to human populations.

The two authors are John McDermott, who has since moved from ILRI to the International Food Policy Research Institute, where he leads a new CGIAR Research Program on ‘Agriculture for Better Nutrition and Health’, and Delia Grace, who remains at ILRI and leads the health components of this new program.

Introduction to this ILRI essay
‘Since the widespread domestication of animals in the Neolithic era, 10,000–15,000 years before the Common Era (CE), human livelihoods have been inextricably linked with the livestock they keep. Domesticated animals must have been among the most valued assets of ancient humans: walking factories that provided food, fertiliser, power, clothing, building materials, tools and utensils, fuel, power and adornments. Inevitably, the innovations of crop cultivation and food storage that allowed people to settle and live in high numbers and densities also increased the number of animals kept, density of livestock population and the intimacy of human-animal interactions. Pathogens responded, undergoing intense genomic change to seize these dramatically expanded opportunities.

Epidemics of highly contagious and lethal disease emerged, as livestock and people reached the critical population sizes needed for acute infections to persist. Diseases also jumped species from animal to humans: the lethal gift of livestock.

‘This chapter discusses which livestock epidemics are likely to constitute a disaster and why. . . .

Conclusion of the ILRI chapter
‘The struggle with epizootics continues and has even intensified in recent times. Population-decimating animal plagues, such as contagious bovine pleuropneumonia, peste des petits ruminants, swine fever, Newcastle disease and avian influenza, continue to have lethal and devastating impacts on livestock and livelihoods.

Livestock plagues are also shifting and emerging while climate change, urbanisation, migrations, genetically modified crops and rapid land use changes are examples of wild cards which could alter the present distribution for the disease dramatically for the worse.

The declaration of an era of epidemics, though, might be premature. In richer countries, dependence on livestock is low, resources exist to effectively control disease and non-communicable diseases associated with modern farming systems (such as lameness and reproductive problems) production pose the greatest problem to animal health.

‘In the developing world, the situation is different. Many people depend on animal agriculture: 700 million people keep livestock and up to 40 per cent of household income depends on livestock. Animal and human disease outbreaks are far more frequent, both for infections well controlled elsewhere and for emerging diseases.

In the poorest countries in Africa, livestock plagues that were better controlled in the past are regaining ground. Paradoxically, the fear of epizootics is much higher among the worried well in rich countries, who are highly concerned about the diseases they are very unlikely to fall sick or die of.

Thankfully this enlightened self-interest is providing more support for control of epizootics in poor countries. But it appears that while the centralised control of livestock plagues is effective (albeit, at high-cost) in richer countries, it struggles in the poorest. New approaches are not only needed but need to be rapidly tested and made available. What is required now is the vision and courage to transcend sectoral and conventional veterinary approaches and apply innovations to these urgent problems.’

Read the whole ILRI essay, which has been published as a chapter titled ‘Livestock epidemic’, freely available here on ILRI’s Mahider document repository, in a book by Routledge: Handbook of Hazards and Disaster Risk Reduction, edited by Ben Wisner, JC Gaillard , Ilan Kelman, published December 2011, 880 pages (hardback: 978-0-415-59065-5: USD240.00).

 

A pig from Western Kenya

A People, Animals and their Zoonoses (PAZ) project of the University of Edinburgh and ILRI is investigating the role played by pigs in transmitting zoonotic diseases and the risk factors for human infection in western Kenya (photo credit: ILRI/University of Edinburgh/Lian Doble).

Lorren Alumasa, ILRI clinical technician with the PAZ project collecting blood sample from a study participant

Lorren Alumasa, ILRI clinical technician with the People, Animals and their Zoonoses project (PAZ), collects blood sample from a study participant. The PAZ project investigates the role played by pigs in transmitting zoonotic diseases and the risk factors for human infection in western Kenya (photo credit: ILRI/Lorren Alumasa).

About the Handbook
The Handbook provides a comprehensive statement and reference point for hazard and disaster research, policy making, and practice in an international and multi-disciplinary context. It offers critical reviews and appraisals of current state of the art and future development of conceptual, theoretical and practical approaches as well as empirical knowledge and available tools. Organized into five inter-related sections, this Handbook contains sixty-five contributions from leading scholars. Section one situates hazards and disasters in their broad political, cultural, economic, and environmental context. Section two contains treatments of potentially damaging natural events/phenomena organized by major earth system. Section three critically reviews progress in responding to disasters including warning, relief and recovery. Section four addresses mitigation of potential loss and prevention of disasters under two sub-headings: governance, advocacy and self-help, and communication and participation. Section five ends with a concluding chapter by the editors.

Making Asian agriculture smarter

cambodia21_lo

A cow feeds on improved CIAT forage grasses, in Kampong Cham, Cambodia (photo credit: Neil Palmer/CIAT).

Last week, coming on the heels of a Planet Under Pressure conference in London, which set out to better define our ‘planetary boundaries’ and to offer scientific inputs to the Rio+20 United Nations sustainable development conference this June, a group of leaders in Asia—comprising agriculture and meteorology chiefs, climate negotiators and specialists, and heads of development agencies—met to hammer out a consensus on ways to make Asian agriculture smarter.

The workshop, Climate-smart agriculture in Asia: Research and development priorities, was held 11–12 April 2012 in Bangkok. It was organized by the Asia-Pacific Association of Agricultural Research Institutes; the CGIAR Research Program on Climate Change, Agriculture and Food Security; and the World Meteorological Organization.

This group set itself three ambitious tasks: To determine the best options (1) for producing food that will generate lower levels of greenhouse gases, which cause global warming; (2) for producing much greater amounts of food, which are needed to feed the region’s rapidly growing and urbanizing population; and (3) for doing all this under a changing climate that, if farming and farm policies don’t change, is expected to reduce agricultural productivity in the region by anywhere from 10 to 50 per cent over the next three decades.

The workshop participants started by reviewing the best practices and technologies now available for making agriculture ‘climate smart’. They then reviewed current understanding of how climate change is likely to impact Asian agriculture. They then agreed on what are the gaps in the solutions now available and which kinds of research and development should be given highest priority to fill those gaps. Finally, they developed a plan for filling the gaps and linking scientific knowledge with policy actions at all levels.

On the second of this two-day workshop, the participants were asked to short-list no more than ten key areas as being of highest priority for Asia’s research and development communities.

This exercise tempted this blogger to suggest ten suitable areas in the livestock sector.

(1) Lower greenhouse gas emissions from livestock through adoption of improved feed supplements (crops residues) that reduce greenhouse gas emissions.
Contact ILRI animal nutritionist Michael Blümmel, based in Hydrabad, for more information: m.blummel at cgiar.org

(2) Safeguard public health by enhancing Asia’s capacity to detect and control outbreaks of infectious diseases transmitted between animals and people.
Contact ILRI veterinary epidemiologist Jeff Gilbert, based in Vientienne, for more information: j.gilbert at cgiar.org

(3) Improve the efficiency of water used for livestock and forage production.
Contact ILRI rangeland ecologist Don Peden, based in Vancouver, for more information: d.peden at cgiar.org 

(4) Pay livestock keepers for their provision of environmental services.
Contact ILRI ecologist Jan de Leeuw, based in Nairobi, for more information: j.leeuw at cgiar.org

(5) Recommend levels of consumption of meat, milk and eggs appropriate for the health of people, their livelihoods and environments in different regions and communities.
Contact ILRI partner Tara Garnett, who runs the Food Climate Research Network based in Guildford, for more information:  t.garnett at surrey.ac.uk

(6) Design institutional and market mechanisms that support the poorer livestock keepers, women in particular.
Contact ILRI agricultural economist Steve Staal, based in Nairobi, for more information: s.staal at cgiar.org 

(7) Educate publics in the West on the markedly different roles that livestock play in different regions of the world.
Contact ILRI systems analyst Philip Thornton, based in Edinburgh, for more information: p.thornton at cgiar.org

(8) Adopt risk- rather than rule-based approaches to ensuring the safety of livestock foods.
Contact ILRI veterinary epidemiologist Delia Grace, based in Nairobi, for more information: d.grace at cgiar.org 

(9) Focus attention on small-scale, relatively extensive, mixed crop-and-livestock production systems.
Contact ILRI systems analyst Mario Herrero, based in Nairobi, for more information: m.herrero at cgiar.org 

(10) Give livestock-keeping communities relevant and timely climate and other information via mobile technologies.
Contact ILRI knowledge manager Pier-Paolo Ficarelli, based in Delhi, for more information: p.ficarelli at cgiar.org

Do you have a ‘top-ten’ list of what could make Asian agriculture ‘smart agriculture’? Post it in the Comment box, please!

Go here for ILRI blogs about the Planet Under Pressure conference.

ILRI in Asia blog

Researchers strengthen their partnerships in the fight against Rift Valley fever

Typical mixed crop-livestock farming of western Kenya

A mixed crop-livestock farm in Western Kenya. Livestock researchers are working towards joint efforts of preventing and controlling Rift Valley fever in eastern Africa (photo credit: ILRI/Charlie Pye-Smith).

A new effort to align the work of partners in eastern Africa and implement more synergetic research on Rift Valley fever was the focus of a recent multi-stakeholder workshop that reviewed research strategies and approaches used by veterinarians, epidemiologists, economists and public health experts in projects across Kenya.

The meeting, which was held at the International Livestock Research Institute (ILRI) on 2 February 2012, discussed ILRI’s Rift Valley fever research program, potential collaborations with partners and options of controlling the mosquito-borne viral disease that affects cattle herds in eastern and southern Africa. Epidemics of the disease, which can also infect humans, emerge after above-average and widespread rainfall and lead to death and abortion in livestock.

Participating organizations, which are conducting research on Rift Valley fever, included Kenya’s ministries in charge of livestock development and public health, the universities of Nairobi and Egerton, Kenya Agricultural Research Institute and Kenya Medical Research Institute. Also attending the workshop were staff of the African Union Interafrican Bureau for Animal Resources (AU-IBAR), Swiss Tropical and Public Health Institute, the Nairobi office of the US Centres for Disease Control and Food and Agriculture Organization of the United Nations (FAO).

‘Our research in Rift Valley fever is benefitting from increasing collaboration,’ said Bernard Bett, an epidemiologist with ILRI. ‘These “joined up” efforts, are supporting joint assessments of the prevalence of zoonotic diseases in both animals and humans and are helping to increase the relevance of the research leading to more effective interventions.’

This strategy should lead to lower costs of doing research and implementing human and animal health interventions and a reduced burden of Rift Valley fever on the region’s livestock, people, wildlife and markets.

Esther Schelling, a epidemiologist with the Swiss Tropical and Public Health Institute, and formerly a researcher with ILRI, said: ‘Collaborative efforts in addressing the challenge of Rift Valley fever can support “one health” initiatives that seek to raise the research profile of neglected zoonotic diseases in Africa and improve the effectiveness of interventions through joint surveillance, preparedness and contingency planning to reduce the amount of time it takes to control outbreaks of these diseases.’

During the meeting, ILRI shared findings from a collaborative project known as ‘Enhancing prevention and control of Rift Valley fever in East Africa by inter-sectorial assessment of control options.’ For example, an analysis, by the project, of the public health burden of Rift Valley fever outbreaks measured in disability adjusted live years (DALYs) – the first of its kind in Kenya – shows that the 2006 and 2007 outbreak resulted in 3.4 DALYs per 1000 people and household costs of about Ksh 10,000 (USD120) for every human case reported. In 2008, ILRI estimated the disease cost the Kenyan economy USD30 million. Findings from the project also included a dynamic herd model developed for pastoral systems for simulating herd dynamics during normal and drought periods and in Rift Valley fever outbreaks. This model will be used to simulate the impacts of prevention and control options for the disease.

The Nairobi meeting discussed gaps in current research practice including the absence of climate models, sampling tools and methods to support decision support tools. Participants highlighted the need for a vector profile of the disease to enable mapping of most affected and high-risk areas and the need to understand how Rift Valley fever interacts between livestock and wildlife.

The prevention and control options discussed at the meeting will be further simulated using the herd dynamic model, which will be followed by an economic analysis using a process that was agreed on in an earlier (September 2011) workshop that discussed Rift Valley fever surveillance. A cost-benefit analysis of vaccination, vector control, surveillance, and sanitary measures is now scheduled. Results from the analysis will give much-needed evidence to support creation of policies and strategies for appropriate surveillance, prevention and control of Rift Valley fever in eastern Africa.

According to Tabitha Kimani, an agricultural economist with ILRI, ‘preliminary cost benefit analysis is already showing that it is beneficial to control Rift Valley fever through vaccination.’

 

Read more on Rift Valley fever research at ILRI and the region:

ILRI news archive

https://newsarchive.ilri.org/index.php?s=%22Rift+Valley+fever%22&submit=Search

ILRI clippings archive

http://ilriclippings.wordpress.com/2012/02/12/could-rift-valley-fever-be-a-weapon-of-mass-destruction-an-insidious-insect-animal-people-infection-loop-explored/

 

 

 

CGIAR research coalition approves six programs to boost global food security

CGIAR Research Program 3.7 on livestock and fish

The developing world’s supplies of wheat, livestock, fish, roots, tubers, and bananas, along with the nutrition of its poorer communities and the food policies of its governments, should be enhanced in the coming years by new funding approved by the Consultative Group on International Agricultural Research (CGIAR), the world’s largest international agriculture research coalition.

The CGIAR has approved six new programs, totalling some USD957 million, aimed at improving food security and the sustainable management of the water, soils and biodiversity that underpin agriculture in the world’s poorest countries. The newly created CGIAR Fund is expected to provide USD477.5 million, with the balance of the support needed likely to come from bilateral donors and other sources.

The six programs focus on sustainably increasing production of wheat, meat, milk, fish, roots, tubers and bananas; improving nutrition and food safety; and identifying the policies and institutions necessary for smallholder producers in rural communities, particularly women, to access markets.

The programs are part of the CGIAR’s bold effort to reduce world hunger and poverty while decreasing the environmental footprint of agriculture. They will target regions of the world where recurrent food crises—combined with the global financial meltdown, volatile energy prices, natural resource depletion, and climate change—undercut and threaten the livelihoods of millions of poor people.

‘More and better investment in agriculture is key to lifting the 75 per cent of poor people who live in rural areas out of poverty,’ said Inger Andersen, CGIAR Fund Council chair and World Bank vice-president for sustainable development. ‘Each of these CGIAR research programs addresses issues that are fundamental to the well-being of poor farmers and consumers in developing countries. Supporting such innovations is key to feeding the nearly one billion people who go to bed hungry every night.’ CGIAR Fund members include developing and industrialized country governments, foundations and international and regional organizations.

Each of the research programs, proposed by the Montpellier-based CGIAR Consortium of International Agricultural Research Centers, is working on a global scale by combining the efforts and expertise of multiple members of the CGIAR Consortium and involving some 300–600 partners from national agricultural research systems; advanced research institutes; non-governmental, civil society and farmer organizations; and the private sector. By working in partnership on such a large scale, the CGIAR-plus=partners effort is unprecedented in size, scope of the partnerships and expected impact.

The six new programs, each implemented by a lead centre from the CGIAR Consortium, join five other research endeavours approved by the CGIAR in the past nine months (on rice, climate change, forests, drylands, and maize) as part of the CGIAR’s global focus on reducing poverty, improving food security and nutrition and sustainably managing natural resources. Each of the six programs described below was approved with an initial three-year budget.

CGIAR Research Program 3.7 on livestock and fish

Meat, Milk and Fish (USD119.7m) will increase the productivity and sustainability of small-scale livestock and fish systems to make meat, milk and fish more profitable for poor producers and more available and affordable for poor consumers. Some 600 million rural poor keep livestock while fish—increasingly derived from aquaculture—provide more than 50 per cent of animal protein for 400 million poor people in Africa and South Asia. This program will be led by the International Livestock Research Institute (ILRI), based in Africa.

Agriculture for Improved Nutrition and Health (USD191.4m) is designed to leverage agriculture improvements to deal with problems related to health and nutrition. It is based on the premise that agricultural practices, interventions and policies can be better aligned and redesigned to maximize health and nutrition benefits and reduce health risks. The program will address the stubborn problems of under-nutrition and ill-health that affect millions of poor people in developing countries. Focus areas include improving the nutritional quality and safety of foods in poor countries, developing biofortified foods and generating knowledge and techniques for controlling animal, food and water-borne diseases. This program will be led by the International Food Policy Research Institute (IFPRI), based in the USA, with the health aspects led by ILRI.

Wheat (USD113.6m) will create a global alliance for improving productivity and profitability of wheat in the developing world, where demand is projected to increase by 60 per cent by 2050 even as climate change could diminish production by 20 to 30 per cent. Accounting for a fifth of humanity’s food, wheat is second only to rice as a source of calories for developing-country consumers and is the number one source of protein.

Aquatic Agriculture Systems (USD59.4m) will identify gender-equitable options to improve the lives of 50 million poor and vulnerable people who live in coastal zones and along river floodplains by 2022. More than 700 million people depend on aquatic agricultural systems and some 250 million live on less than USD1.25 per day. The program will explore the interplay between farming, fishing, aquaculture, livestock and forestry with efforts focused on linking farmers to markets for their agricultural commodities.

Policies, Institutions and Markets (USD265.6m) will identify the policies and institutions necessary for smallholder producers in rural communities, particularly women, to increase their income through improved access to and use of markets. Insufficient attention to agricultural markets and the policies and institutions that support them remains a major impediment to alleviating poverty in the developing world, where in most areas farming is the principal source of income. This initiative seeks to produce a body of new knowledge that can be used by decision-makers to shape effective policies and institutions that can reduce poverty and promote sustainable rural development.

Roots, Tubers and Bananas (USD207.3m) is designed to improve the yields of farmers in the developing world who lack high-quality seed and the tools to deal with plant disease, plant pests and environmental challenges. Over 200 million poor farmers in developing countries are dependent on locally grown roots, tubers and bananas for food security and income, which can provide an important hedge against food price shocks. Yet yield potentials are reduced by half due to poor quality seed, limited genetic diversity, plant pests and disease and environmental challenges.

‘These programs mark a new approach to collaborative research for development,’ said Carlos Perez del Castillo, CGIAR Consortium Board Chair. ‘They bring together the broadest possible range of organizations to ensure that research leads to development and real action that improves people’s lives.’

Note: The Consultative Group on International Agricultural Research (CGIAR) is a global partnership that unites organizations engaged in research for sustainable development with the funders of this work. The funders include developing- and industrialized-country governments, foundations and international and regional organizations. The work they support is carried out by 15 members of a Consortium of International Agricultural Research Centers, in close collaboration with hundreds of partner organizations, including national and regional research institutes, civil society organizations, academia and the private sector.

New PNAS-published study discloses the ‘hot spots’, ‘warm spots’ and ‘cold spots’ of global livestock disease risk

Mozambique, Garue, Lhate village

Small-scale livestock-dependent agriculture in developing countries makes up one of three trajectories of global disease risk; here, cattle belonging to a widowed farmer in Garue, Mozambique, are brought in for the night by a herdsboy (photo credit: ILRI/Mann).

‘Current drivers and future directions of global livestock disease dynamics’ is a special feature published in the (online) 16 May 2011 issue of the Proceedings of the National Academy of Sciences (PNAS) of the USA. The authors of the paper are Brian Perry, Delia Grace and Keith Sones.

Irish veterinary epidemiologist Delia Grace leads a team researching animal health and food safety for trade at the International Livestock Research Institute (ILRI), based in Nairobi, Kenya.

In the PNAS paper, the authors write: ‘The current era of globalization is seeing unprecedented movements of people, products, capital and information. Although this has obvious implications for economies and ecosystems, globalization also affects the health of people and animals. This paper reviews changing patterns of livestock disease over the last two decades, discusses the drivers of these patterns, and plots future trajectories of livestock disease risk in an effort to capitalize on our understanding of the recent past and provide a guide to the uncertain future.’

While acknowledging the complexity of disease dynamics, the authors point to three main drivers of changing livestock disease dynamics: ecosystem change, ecosystem incursion, and movement of people and animals. Underlying these dynamics are the growing demand for livestock products (the Livestock Revolution) and increasing human population size.

The authors identify three trajectories of global disease dynamics:
‘(i) the worried well in developed countries (demanding less risk while broadening the circle of moral concern)
‘(ii) the intensifying and market-orientated systems of many developing countries, where highly complex disease patterns create hot spots for disease shifts
‘(iii) the neglected cold spots in poor countries, where rapid change in disease dynamics is less likely but smallholders and pastoralists continue to struggle with largely preventable and curable livestock diseases.’

On the topics of major trends in disease dynamics, the authors point out that ‘From a centuries-long and whole-world perspective, human wealth and health continue to improve, and animal health parallels this, showing an overall dramatic decline of infectious disease and shift to noncommunicable diseases. (This has been called the second epidemiological transition; the first epidemiological transition was 10,000 y ago, when human settlement led to a surge in zoonoses and crowd-related diseases.)’

However, the authors also say that ‘Although control and management of many endemic diseases in rich countries have improved, new diseases such as BSE and HPAI have emerged. Some consider that we face a third epidemiological transition of disastrous consequence in which globalization and ecological disruption drive disease emergence and reemergence; as occurred in the first epidemiological transition (associated with neolithic sedentarization and the domestication of livestock), the worst of the emerging diseases are likely to be zoonotic.’

The authors go on to consider ‘the drivers with greatest influence on livestock disease dynamics, namely increasing human population size and prosperity and the related demand-driven Livestock Revolution. . . . [W]e identify three overarching sets of animal diseases dynamics and associated control. Each system is facing different risks to livestock health, each has different determinants of disease status and capacity to respond, and each requires different approaches to resolve them.’

‘In the background,’ they say, ‘is the significant component of the world’s livestock enterprises in the hands of the very poor, for whom intensification is just not a realistic option and who are likely to be most vulnerable to disease resurgence. . . .

‘Although we call these [very poor livestock] systems cold spots for disease dynamics and emergence, they are inevitably hot spots for endemic diseases, periodic epidemics (such as Newcastle disease, which regularly wipes out village flocks), and neglected zoonoses, which significantly impact on human health. Because of the low densities of livestock, their remoteness, and the slow change in husbandry practices, these are probably not hot spots for emerging diseases. . . .

‘This review is prognostic rather than therapeutic, presenting implications for livestock disease in the 21st century. In an increasingly globalized world, deepening of the existing balkanization of livestock health status will create inevitable instability. The main challenges are (i) to speed the convergence of livestock health between the intensifying and intensified regions through improved coordination, communication, and harmonization and (ii ) to improve resilience of smallholder livestock systems, including the support of viable exits from livestock keeping.’

Read the whole paper in the Proceedings of the National Academy of Sciences: Current drivers and future directions of global livestock disease dynamics, by Brian Perry, Delia Grace and Keith Sones, 16 May 2011.

Read an ILRI brief: Why animals matter to health and nutrition, February 2011.

Read another ILRI News Blog article related to this topic: Adapting agriculture to improve human health—New ILRI policy brief, 21 February 2011.

Read an ILRI news release: Livestock boom risks aggravating animal ‘plagues,’ poses growing threat to food security and health of the world’s poor, 2 February 2011.

Forestalling the next plague: Building a first picture of all diseases afflicting people and animals in Africa

Typical mixed crop-livestock farming of western Kenya

An ILRI-Wellcome project is investigating the disease pathogens circulating in both people and animals in the communities outside the border town of Busia, Kenya, where smallholders mix crop growing with livestock raising (photo credit: ILRI/Pye-Smith).

A project funded by the Wellcome Trust on zoonotic diseases was broadcast last week on an Australian television program called ‘Catalyst’. The show ran on Thursday, 10 March 2011, at 20:00 Australian time. The research described in the program is supported by the International Livestock Research Institute (ILRI), where the project’s principal investigator, Eric Fevre, is hosted.

The television program interviews Fevre and his colleagues Lian Doble, a veterinarian managing laboratory work in western Kenya, and  Appolinaire Djikeng, technology manager of a Biosciences eastern and central Africa (BecA) Hub, located on ILRI’s Nairobi, Kenya, campus.

Fevre and Doble and their team are investigating what disease pathogens of both people and animals are circulating near the border town of Busia, a very poor, densely populated area whose communities mix crop growing with livestock raising on small plots of land. Research such as this that is looking at both human and animal diseases is rare but urgently needed because the close relations of people and farm animals in many poor regions, as well as the existence of monkeys and other wildlife nearby, is a ‘recipe for diseases’ jumping from animals to people. If we’re going to manage to forestall another zoonotic plague such as bird flu or HIV/AIDS, we’re going to have to conduct more of such ‘one health’ investigations that look at exactly what diseases are being transmitted between animals and people. The research project in western Kenya is part of a larger study being conducted by the BecA Hub to look at diseases of animals and people across eastern Africa. The BecA Hub team is using genomics and meta-genomics, and ‘4 million bucks of computing power,’ to build a picture of the complex relations of disease pathogens circulating in the region.

Eric Fevre and pit latrine in Busia, Kenya

Eric Fevre, who leads the ILRI-Wellcome project investigating the disease pathogens circulating in both people and animals in Busia, points out a pit latrine frequented by pigs as well as people, where disease transmission between the two species is most likely to occur (photo credit: ILRI/Pye-Smith).

A transcript of the Australian television program on this research follows.

NARRATION
Africa, the cradle of humanity and renowned for its wildlife. It could also be the origin of the next global pandemic. It’s long been known that people and animals living close together—well, that’s a recipe for disease. But exactly which diseases? And if new diseases are creeping into the system? Well, that’s something they’re trying to find out here in western Kenya. They’re called zoonotic diseases: infections that can jump from animals to people.

Eric Fevre
There are lots of zoonotic infections. In fact, about 60 per cent of all human diseases are of zoonotic origin.

NARRATION
So this team headed by Eric Fevre is taking a much closer look at the health of people and livestock in a densely populated region of western Kenya.

Eric Fevre
It seems to be obvious that zoonotic infections will occur more in people who keep livestock than in those who don’t. Whether that’s the case has never been formally established.

Lian Doble
If you look around here you don’t see the cattle in a field, in a fenced field or in a barn away from the people. Cattle are tethered within the compound that everybody’s working in, the chickens are loose around, going in and out of the houses. It’s a much more integrated system than anything we really see at home.

NARRATION
The kinds of problems that this environment creates are readily apparent.

Eric Fevre
We’re in a mixed crop-livestock production system where people are keeping a few animals. And as you can see behind me here, it’s the rainy season and people have recently planted their new crops. And this is an area of interaction between the croplands and the animals. And you can see behind over there behind those fields is some forest. And there might be a watercourse flowing through that forest, for example, where the animals are going to water. And that’s where the exciting things happen from a disease transmission point of view.

NARRATION
Part of the team focus on human health, taking a range of samples from people in the village as well as a detailed account of their medical history and current living situation. Meanwhile, others in the team have a look at the livestock.

Lian Doble
What we do know is that there are a large number of diseases that circulate between animals and humans. The problem is that a lot of these diseases cause signs which are very similar to other human diseases like malaria and human tuberculosis. What isn’t known is actually how many of the diseases that are mainly diagnosed as malaria actually are another disease caused by the pathogens found in cattle. So we’re just trying to find out what diseases she has and what are shared with the people that she lives with.

Paul Willis
And does she look healthy?

Lian Doble
She’s feisty and she’s quite healthy so we’ll see what she might have been carrying. And we can tell you later in the lab.

NARRATION
Samples are taken back to field laboratories in the town of Busia on the Ugandan border.

The ILRI-Wellcome Trust laboratory in Busia, Kenya

The ILRI-Wellcome Trust animal-human laboratory in Busia, Kenya (photo credit: ILRI/Pye-Smith).

Eric Fevre
In this place we’ve got a human and an animal lab next door where we process the material that comes in from the field. One of the things that we really need to do is look at fresh material. Because once the samples get a bit old, the parasites become a bit difficult to identify. And the second important thing is that we of course feed back to the participants of our study. So results that we get in the lab here are used directly by the clinicians working in the field to decide what treatments they should be giving people. So that’s one of the direct ways that our research project feeds back into the community.

NARRATION
This detailed look at the community health of a whole region is showing many expected results, and a few surprises.

Eric Fevre
One of the diseases that we’re testing for is brucellosis. And looking at the official reports there isn’t any brucellosis in this region. But we have detected brucellosis both in animals and in people and so already that’s what’s telling us that there are things circulating here that official records don’t pick up.

NARRATION
There seems to be a lot of malaria around, but Eric’s team are finding that many cases are masking something much more sinister.

Eric Fevre
Often it won’t be malaria. It will be something else. And there are a multitude of different pathogens that cause fever of the type that malaria also causes. And that’s a real problem. Because somebody with a low income might need to, say, sell one of their animals to then go to the clinic, get a diagnosis, buy some anti-malarial drugs. They don’t work because the person actually has sleeping sickness. So they go back to a different clinic. Or to a traditional healer. They get drugs that don’t work for the infection that they have. And so on and so on, five, six, seven times, travelling maybe ten kilometres each time. That’s a huge economic burden on them. And then finally they get properly diagnosed when they’re in the late stage of their infection. And it would have been much easier to treat them if they’d have been caught earlier on.

NARRATION
It’s a very complex picture that is emerging, one that could be simplified by some basic technology.

Lian Doble
Thirty per cent of our participants don’t have access to a latrine. You can imagine what that means. And that’s something that could be very actually quite easily sorted out with some education and some money and would sort out all sorts of other diarrhoeal diseases, which are one of the huge killers of young children in Africa.

Biosciences eastern and central Africa hub platform

One of the ultra-modern laboratories at the Biosciences eastern and central Africa (BecA) Hub ‘platform’ hosted and managed by ILRI in Nairobi, Kenya (photo credit: ILRI/White).

NARRATION
Back in Nairobi another team is taking a different look at the spread of diseases across east Africa.

NARRATION
Appolinaire Djikeng heads up a team collecting samples of animals and people from a wide swath across Kenya.

Appolinaire Djikeng
So essentially at the moment we are trying to cover the east African region. But of course we would like to once we establish our processes and data management skills and data analysis skills we like to expand this to other parts of Africa.

NARRATION
The first step in the labs is to figure out exactly what spread of diseases are present in their samples.

Appolinaire Djikeng
You are able to go in there, look at the, the complex composition of the viruses, at the pathogens or at the small organisms that exist in them in doing it that way you are able to come up with a catalogue of potential organisms that exist in there.

NARRATION
And this analysis goes deep into the DNA of the viruses and pathogens that are found, tracking minute changes in their genetic make-up that allows Appolinaire’s team to follow the spread of individual strains of a disease.

Appolinaire Djikeng
We have a reasonably good bioinformatic infrastructure here for storing that data and extracting them, looking at specific parameters from that particular data base. With so many samples from such a wide geographical area and with so much information for each individual sample these guys are dealing with a lot of data and so they brought in four million bucks worth of computing grunt. With so many samples from such a wide geographic area and with so much information for each individual sample these guys are dealing with a lot of data. So they brought in four million bucks worth of computing grunt.

NARRATION
There are several teams looking at zoonotic diseases in Kenya, but the impact of their work is global.

Appolinaire Djikeng
The threat of emerging and re-emerging infectious diseases are no longer restricted to countries like central Africa or sub-Saharan Africa So I think now we have to put this work in the context of the global effort across the world. Trying to make sure that even remote parts of the area do have resources and capabilities to begin to do good and accurate diagnostics of what could be emerging.

Eric Fevre
We actually use the data that we gather to, to try and understand how these things are being transmitted, how the fact that your animal has this disease impacts on your risk at a population scale. And, and use that to then try and understand the, the process of transmission of these diseases.

Lian Doble
The next big disease problem is very likely to be a zoonotic disease so doing this sort of work and then leaving it isn’t an option. It needs to be ongoing and, and build. This is the start of something and we’ll build on it from here.

Download this Catalyst show from Australia’s ABC website (select ‘Zoonosis’ 10/3/2011).

And check out a blog by Paul Willis about the adventures of filming in Kenya’s border town of Busia: Coming to an end, 7 March 2011.

Here’s some of what Paul Willis has to say in his blog about this film project:
‘Busia is a hard place; a border crossing town riddled with grinding poverty and hard living. The main street, the only sealed road through town, is frequently clogged with a seemingly endless string of trucks waiting to cross the border into Uganda. Because Uganda, Rwanda and Burundi are all landlocked nations, every drop of fuel and most freight coming into the country has to be trucked in from Mombasa and most of that comes through Busia. . . . This area of Kenya has some of the most intensively farmed land in East Africa. The whole landscape is divided into small plots with clusters of mud and thatch huts scattered among them. Here people live cheek-by-jowl with their crops and animals. It’s a recipe for diseases to jump from animals to people. Add strips of forested vegetation inhabited by a variety of monkeys and other native mammals and the chances of new diseases leaping into the human population goes up dramatically. We’re here to report on the work of a dedicated group trying to get a handle on exactly what diseases are in this chaotic system. It’s hard work, in one of the hotter areas of Kenya, and the study is spread over a huge area. . . .’

Adapting agriculture to improve human health–new ILRI policy brief

A sleeping sickness patient in Soroti, Uganda

A child with sleeping sickness undergoes lengthy recovery treatment at a sleeping sickness clinic in Soroti, Uganda (photo credit: ILRI).

John McDermott, a Canadian deputy director general for research at the International Livestock Research Institute (ILRI) and a veterinary epidemiologist by training, and Delia Grace, an Irish veterinary epidemiologist working in food safety and many other areas of livestock health, have written a new policy brief on agriculture-associated diseases.

This policy brief has recently been disseminated by McDermott and Grace at an international conference on the agriculture, nutrition and health interface in New Delhi and a conference on the ‘One Health’ approach to tackling human and animal health, held in Melbourne.

McDermott and Grace argue that the way we approach agriculture does not serve human interests as a whole. ‘In the past, agricultural research and development largely focused on improving the production, productivity and profitability of agricultural enterprises. The nutritional and other benefits of agriculture were not always optimized, while the negative impacts on health, well-being and the environment were often ignored. This was especially problematic for livestock systems, with especially complex negative and positive impacts on human health and well-being.’

They give as an example a side effect of agricultural intensification: disease. ‘Highly pathogenic avian influenza (HPAI) is a notorious example of a disease that was fostered by intensified agricultural production and spread through lengthened poultry value chains and the global movement of people and animals. Large-scale irrigation projects, designed to increase agriculture productivity, have created ecosystems conducive to schistosomiasis and Rift Valley fever.’

And the reason we fail to foresee the negative effects of some agricultural practices, they say, is because the responses to disease threats are often compartmentalized. ‘Instead of analysing the tradeoffs between agricultural benefits and risks, the agriculture sector focuses on productivity, while the health sector focuses on managing disease. A careful look at the epidemiology of diseases associated with agriculture, and past experience of control efforts, shows that successful management must be systems-based rather than sectorally designed.’

‘At least 61% of all human pathogens are zoonotic (transmissible between animals and people),’ they write, ‘and zoonoses make up 75% of emerging infectious diseases. A new disease emerges every four months; many are trivial, but HIV, SARS, and avian influenza illustrate the huge potential impacts. Zoonoses and zoonotic diseases recently emerged from animals are responsible for 7% of the total disease burden in least-developed countries.

‘As well as sickening and killing billions of people each year, these diseases damage economies, societies and environments. While there is no metric that captures the full cost of disease, assessments of specific disease outbreaks suggest the scale of potential impacts. . . .

‘. . . There are two broad scenarios that characterize poor countries. At one extreme are neglected areas that lack even the most basic services; in these “cold spots,” diseases persist that are controlled elsewhere, with strong links to poverty, malnutrition and powerlessness. At the other extreme are areas of rapid intensification, where new and often unexpected disease threats emerge in response to rapidly changing practices and interactions between people, animals and ecosystems. These areas are hot spots for the emergence of new diseases (of which 75% are zoonotic). They also are more vulnerable to food-borne disease, as agricultural supply chains diversify and outpace workable regulatory mechanisms.

‘. . . What cannot be measured cannot be effectively and efficiently managed. Addressing agriculture-associated disease requires assessing and prioritizing its impacts, by measuring not only the multiple burdens of disease but also the multiple costs and benefits of potential interventions—across health, agriculture and other sectors. . . .

‘But these assessment tools and results have rarely been integrated to yield a comprehensive assessment of the health, economic and environmental costs of a particular disease. . . .

‘The complexities of agriculture-associated diseases call for more integrated and comprehensive approaches to analyse and address them, as envisioned in One Health and Eco- Health perspectives . . . . These integrated approaches offer a broad framework for understanding and addressing complex disease: they bring together key elements of human, animal and ecosystem health; and they explicitly address the social, economic and political determinants of health. Both of these global approaches recognize agriculture- and ecosystem-based interventions as a key component of multi-disciplinary approaches for managing diseases. For example, food-borne disease requires management throughout the field-to-fork risk pathway. Zoonoses in particular cannot be controlled, in most cases, while disease remains in the animal reservoir. Similarly, agriculture practices that create health risks require farm-level intervention.

‘Systemic One Health and EcoHealth approaches require development and testing of methods, tools and approaches to better support management of the diseases associated with agriculture. The potential impacts justify the substantial investment required. . . .

‘As a basis for framing sound policies, information is needed on the multiple (that is, cross-sectoral) burdens of disease and the multiple costs and benefits of control, as well as the sustainability, feasibility and acceptability of control options. An example of cross-disciplinary research that effectively influenced policy is the case of smallholder dairy in Kenya. In the light of research by ILRI and partners, assessing both public health risks and poverty impacts of regulation, the health regulations requiring pasteurization of milk were reversed; the economic benefits of the change were later estimated at USD26 million per year. This positive change required new collaboration between research, government and non-governmental organizations and the private sector, as well as new ways of working . . . .

‘Many agriculture-associated diseases are characterized by complexity, uncertainty and high-potential impact. They call for both analytic thinking, to break problems into manageable components that can be tackled over time, and holistic thinking, to recognize patterns and wider implications as well as potential benefits.

‘The analytic approach is illustrated in the new decision-support tool developed to address Rift Valley fever in Kenya. In savannah areas of East Africa, climate events trigger a cascade of changes in environment and vectors, causing outbreaks of Rift Valley fever among livestock and (ultimately) humans. Improving information on step-wise events can lead to better decisions about whether, when, where and how to institute control . . . .

‘An example of holistic thinking is pattern recognition applied to disease dynamics, recognizing that emerging diseases have multiple drivers. A synoptic view of apparently unrelated health threats—the unexpected establishment of chikungunya fever in northern Italy, the sudden appearance of West Nile virus in North America, the increasing frequency of Rift Valley fever epidemics in the Arabian Peninsula, and the emergence of bluetongue virus in northern Europe—strengthens the suspicion that a warming climate is driving disease expansion generally.

‘Complex problems often benefit from a synergy of various areas of expertise and approaches. . . . Complex problems also require a longer term view, informed by the understanding that short-term solutions can have unintended effects that lead to long-term problems—as in the case of agricultural intensification fostering health threats. . . .

‘New, integrative ways of working on complex problems, such as One Health and EcoHealth, require new institutional arrangements. The agriculture, environment and health sectors are not designed to promote integrated, multi-disciplinary approaches to complex, cross-sectoral problems. But many exciting initiatives provide examples of successful institutional collaboration. . . .

‘Agriculture and health are intimately linked. Many diseases have agricultural roots—food-borne diseases, water-associated diseases, many zoonoses, most emerging infectious diseases, and occupational diseases associated with agrifood chains. These diseases create an especially heavy burden for poor countries, with far-reaching impacts. This brief views agriculture-associated disease as the dimension of public health shaped by the interaction between humans, animals and agro- ecoystems. This conceptual approach presents new opportunities for shaping agriculture to improve health outcomes, in both the short and long terms.

‘Understanding the multiple burdens of disease is a first step in its rational management. As agriculture-associated diseases occur at the interface of human health, animal health, agriculture and ecosystems, addressing them often requires systems-based thinking and multi-disciplinary approaches. These approaches, in turn, require new ways of working and institutional arrangements. Several promising initiatives demonstrate convincing benefits of new ways of working across disciplines, despite the considerable barriers to cooperation.’

Read the whole ILRI policy brief by John McDermott and Delia Grace: Agriculture-associated diseases: Adapting agriculture to improve human health, February 2011.