Zoonoses: The lethal gifts of livestock–Part 3 of ILRI ‘livestock live talk’ by Delia Grace

View this ILRI slide presentation, which is a ‘slidecast’ that includes an audio file of a ‘livestock live talk’ given by veterinary epidemiologist Delia Grace at ILRI’s Nairobi headquarters on 31 Oct 2012.

The following remarks are a transcript of the third part of a presentation made on 31 Oct 2012  by Delia Grace, who works at the International Livestock Research Institute (ILRI), in Nairobi. Grace, a Irish veterinary epidemiologist, leads ILRI’s research on food safety in informal markets in developing countries and on ‘zoonoses’—diseases shared by animals and people. Grace also leads a component on agriculturally related diseases of a new multi-centre CGIAR Research Program on Agriculture for Health and Nutrition, which is headed by John McDermott, former deputy director general-research at ILRI, who is now based at ILRI’s sister CGIAR institute the International Food Policy Research Institute (IFPRI), in Washington, DC, USA. Grace is also a partner in another multi-institutional initiative, called Dynamic Drivers of Disease in Africa.

A prolific writer of scientific publications and a scientist of particularly wide research interests, Grace began her ‘big-picture’ talk on zoonoses—on why, and if, they are ‘the lethal gifts of livestock’—with an overview of human health and disease at the beginning of the 21st century. Go here to read part one:  The riders of the apocalypse do not ride alone: Plagues need war, famine, destruction–and (often) livestock, ILRI News Blog, 4 Nov 2012, and here to read part two: Mapping the perfect storms: Where poverty, livestock and disease meet in terrible triage, ILRI News Blog, 6 Nov 2012.

Here we begin the third and final part of this ILRI ‘livestock live talk’ presentation by Delia Grace on ‘The lethal gifts of livestock’.

‘So we’ve talked a bit about the big picture: human health and disease in the 21st century and why livestock matter. I’ve presented some of the findings on these studies, trying to get some evidence—the evidence decision-makers want, in a format they can use, in a way that motivates them to invest money.

Zoonoses: The Lethal Gifts of Livestock: From mapping to managing slide

Zoonoses: The Lethal Gifts of Livestock: From mapping to managing, by Delia Grace, ILRI ‘livestock live talk’ seminar, 31 Oct 2012.

‘But now, finally, I want to talk a bit about how we move from mapping to managing.

‘Mapping is good but there is always the “paralysis by analysis” with such organizations, And it’s true; I was originally trained as a vet and it’s like we spend all our time on diagnosis and we don’t do any therapy; we never get round to actual treatment. I think too much of the work we’ve done so far has been assessing, trying to know more and more, and not saying, “OK, we know enough; let’s go and do something; let’s show that we can do something; and let’s try and make a difference.

‘So in this last section I’m going to talk about how we are planning to move from mapping and measuring to managing. This takes me to the new CGIAR Research Program ‘Agriculture for Nutrition and Health’, which just started in January, like the CGIAR Research Program on Livestock and Fish, which you may be more familiar with.

‘This brings together a lot of CGIAR centres to focus for the first time on the links between agriculture and human health. It’s led by the International Food Policy Research Institute (IFPRI) and has four components. Three of these components focus on human nutrition—human nutrition is a big problem and it’s probably where the donors are most interest at the moment. But one component focuses on disease, and that’s the component that’s led by ILRI.

Zoonoses: The Lethal Gifts of Livestock: Agriculture-associated diseases slide

Zoonoses: The Lethal Gifts of Livestock: Agriculture-associated diseases, by Delia Grace, ILRI ‘livestock live talk’ seminar, 31 Oct 2012.

‘So “agriculture-associated disease” works at that intersection, the intersection between human health, animal health and agro-ecosystems and value chains. We sometimes talk about “one-health”, this new integrated movement. We like to think of three healths: people, animals and the planet—three healths that are interdependent. And if they’re managed separately, they won’t be managed best.

‘The aim of this component on disease is to have key development implementors as well as the enablers to have the evidence, motivation and capacity. So we need somehow to generate evidence, motivation and capacity, motivation probably being the tricky one, to reduce the burden of disease through agricultural-based interventions and innovations. And that’s key, because of course this whole area of innovation and human health is a very crowded, busy map. We need to identify where agricultural research and agricultural-based interventions can make a difference.

‘So what do we focus on? We focus on big five areas, which we call research activities. Two of them are under food safety, the first being risk management in these informal food markets, where most poor people buy and sell; the second being mycotoxins, which are a fungal toxin in staple crops. And then under “zoonoses”, we have three major focuses: the first being emerging infectious disease, the second neglected zoonoses, and the third “eco-health/one-health”, which is a kind of capacity-building paradigm.

‘Cross-cutting disease and appearing in all of them is a focus on gender and equity. Gender is quite important in disease because it’s both a biological and a social determinant of exposure and vulnerability to disease Equity likewise—poverty, age, other issues can very much affect susceptibility and vulnerability. The second is capacity building; this is key to change and we mean capacity building at all levels, from decision-makers to the science community to the actual farmers and value chain actors. Of course, we won’t be doing that directly; that’s not our comparative advantage. But we can develop pilot tools and new approached that can then be taken up by the development sector. And, third, communication and influence.

How do we get these messages out? How do we move from outputs to outcomes? And how do we show how those outcomes can contribute to impact?

‘There are some key assumptions or hypotheses. These are based on five to ten years’ work. At the same time, they’re not written in stone; they’re things we need to generate more evidence about. And many people would disagree with some or all of these.

‘So, first of all is that the informal food markets are the most important for poor buyers and consumers and will be—no ‘supermarketization’ here–and will be into the next few decades, at least in the countries we care about, where there are the most poor people.

Current food safety regulation is ineffective and unfair; we know it; we know it can even be paradoxical; we know it can make things worse. It’s kind of like the Somalia story—once you’ve got rid of the government, you’ve removed the first constraint to export. We find in many cases, these food safety regulations brought in to make things better make things worse. The way forward we believe is through risk- and incentive-based approaches.

‘The second main areas and the second main hypothesis is that these rapidly intensifying and urbanizing livestock systems are something the planet has never experienced before at this level and this rate, and it really does have the potential to bring about something very nasty. We talked at the beginning of great societal dislocations, of the Neolithic transition, of these massive plagues that wiped out ninety per cent of the population. I’m not saying it’s a fact, it may not even be probable, but it’s certainly something that cannot be ignored.

‘And at the moment, we are woefully ignorant of the disease dynamics and drivers and emergence of what’s going on in these new, novel, never-before seen systems, especially around South Asia, Southeast Asia and parts of the peri-urban areas of African cities. Here we think innovative surveillance—I showed you the surveillance we’ve got, 920,000 dead, 80,000 reported—so here we need innovative surveillance and whole-chain interventions. These are product-driven, demand-driven, rapidly emerging value chains and we need to work with the chain, not just work here and there in a piecemeal approach, as we have done in the past.

‘Our third big area are the cold spots. We sometimes emphasize the hotspots. These are places that are bubbling up, rapidly changing, doing strange things, lots of innovation going on, lots of possibility for thing to pop out of the cooking pot. But then we also have the cold spots, the neglected zoonoses, the pastoral areas, where you still have hundreds of millions of people cut off from markets, cut off from these emerging rapid opportunities, getting poorer and poorer, digging themselves deeper into poverty. And for these people, they’re the ones who are bearing the burden of these neglected zoonoses.

‘Take cysticercosis; you don’t have cysticercosis anymore in Vietnam, where you’ve got rapidly growing, highly innovative pig keepers. You get it in places in Uganda, where pigs are still scavenging and people don’t use latrines. So these people are still suffering from neglected zoonoses that have been eradicated everywhere anyone has got enough money and will power, and they’re symptoms of poverty, really; they’re symptoms of the whole complex. This is not a place for silver bullet approaches; this is a place for integrated approaches—taking a community wide, a gender approach, an equity approach—that deals with all the symptoms and not just the disease.

‘So those are our assumptions and how those assumptions affect what we’re going to be working on as we try and see how agriculture can do its little bit to help manage these diseases.

‘I’m going to give you a few examples before we finish and close for questions.

Zoonoses: The Lethal Gifts of Livestock: Highlight 1 slide

Zoonoses: The Lethal Gifts of Livestock: Highlight 1, by Delia Grace, ILRI ‘livestock live talk’ seminar, 31 Oct 2012.

So here is one highlight. One thing we’re doing this year is conducting rapid integrated assessments of food safety, zoonoses and nutrition in five high-potential CGIAR Research Program on Livestock and Fish value chains. This Livestock and Fish program has made the decision to focus on nine value chains in the whole world and really transform them, bring all of research with development partners to really change these value chains to move millions of people out of poverty. And these value chains are pre-selected as being one of these hotspots I’ve been talking about—rapidly changing, rapidly intensifying, lots going on. The Livestock and Fish program cares about production; they care about increasing productivity. They’re not necessarily thinking about the externalities of this, that they might unleash new diseases on the world, or make lots and lots of people sick by giving them more and more pork that is full of salmonella and trichomonas and things like that. So we see an added value of food safety working with those value chains, not just those in the Livestock and Fish program but in all the CGIAR research program value chains. And also, in many of these areas, food safety is not a standalone concern but if we can piggyback it on lots of other activities, then we can make it go further. Just a quick example—well, no I won’t. But ask me about pigs in Uganda sometime; it’s rather scary.

Zoonoses: The Lethal Gifts of Livestock: Highlight 2 slide

Zoonoses: The Lethal Gifts of Livestock: Highlight 2, by Delia Grace, ILRI ‘livestock live talk’ seminar, 31 Oct 2012.

‘The second highlight I mentioned before and I won’t go into it now but how this mapping and measuring we’re doing of the hotspots is already starting to inform donor agendas and we also want to be part of that funding, if we can be, to help manage what we have measured and mapped.

Zoonoses: The Lethal Gifts of Livestock: Highlight 3 slide

Zoonoses: The Lethal Gifts of Livestock: Highlight 3, by Delia Grace, ILRI ‘livestock live talk’ seminar, 31 Oct 2012.

‘And the third highlight is how these integrated approaches have started making a difference. And these highlights are things the whole of the CGIAR Research Program on Agriculture for Health and Nutrition has done during the year:
(1) Publishing special editions on urban zoonoses.
(2) Starting a new project on how the pathogens flow in Nairobi, from the abattoir to the dumps to the slums to the hospitals to the ILRI campus, and back and forth.
(3) Eco-health, one-health—we set up and are supporting two new centres in Southeast Asia and we’re looking at the barriers and bridges for governments doing things differently.
(4) Rift Valley fever—how does climate change and irrigation cause disease to jump around? We think it does; we want to know how.
(5) Pathogen hunting, here in our biotechnology facilities there’s a big pathogen hunting facility and now bio-repository. What are the implications of these new diseases getting into new systems?
(6) We’re integrating; instead of doing everything separately, we’re putting human and livestock disease surveys. We’re doing that in Kenya, Laos, Vietnam, China. There are some maps from Laos.
(7) Developing and testing new diagnostics; one thing main here has been for cysticercosis.

‘So in conclusion, here are my take-home messages. This is what I’d like people to think about.

‘First, here and now, the burden—the human sicknesses and deaths caused by neglected zoonoses—is much, much higher than that caused by emerging diseases. And most are very manageable. Moreover, the pareto law applies of the vital few and the trivial many. So these are places we can and must act to alleviate human misery.

‘Second, emerging infectious diseases are not so scary by themselves. But when you get a great societal dislocation, then they can be civilization-altering. And are we farming on the brink of chaos? We don’t know. It’s important that we find out, because this is one of the big questions for humanity’s future. Moreover, if societal dislocation is the missing ingredient X that nobody is talking about, we need to think about that, not just the disease.

‘And my final point is that agricultural research has an important role in integrative approaches to improve human health, animal health and the health of the planet.

Zoonoses: The Lethal Gifts of Livestock: Bibliography slide

Zoonoses: The Lethal Gifts of Livestock: bibliography slide, by Delia Grace, ILRI ‘livestock live talk’ seminar, 31 Oct 2012.

‘And here I just list some of the various chapters and papers that this presentation was based upon and where you can get more information if you are scared or skeptical or anything like that.

‘I’d like to acknowledge the mapping and spillover work, which is funded by the UK Department for International Development (DFID) and done with partners from different institutions, and the team leading the component on Agriculture-Associated Diseases of the CGIAR Research Program on Agriculture for Nutrition and Health, whose work I’m representing across food safety, mycotoxins, emerging infectious diseases, zoonoses and eco-health, and the many people who have supported us. And with that, I’ll hand it over to questions and to Tezira Lore to moderate.’

Notes
This ends the third and final part of the seminar by Delia Grace.

Part one of this seminar is here: The riders of the apocalypse do not ride alone: Plagues need war, famine, destruction–and (often) livestock, ILRI News Blog, 4 Nov 2012. Part two is here: Mapping the perfect storms: Where poverty, livestock and disease meet in terrible triage, ILRI News Blog, 6 Nov 2012.

View the slide presentation, which is a ‘slidecast’ that includes an audio file of the presentation by Grace: Zoonoses: The lethal gifts of livestock, an ILRI ‘livestock live talk’ by Delia Grace at ILRI’s Nairobi headquarters on 31 Oct 2012.

Read the invitation to this ILRI ‘livestock live talk’, and sign up here for our RSS feed on ILR’s Clippings Blog to see future invites to this new monthly seminar series.

 

Mapping the perfect storms: Where poverty, livestock and disease meet in terrible triage

The following remarks are a transcript of the second part of a presentation made last week by Delia Grace, who works at the International Livestock Research Institute (ILRI), in Nairobi. Grace, a Irish veterinary epidemiologist, leads ILRI’s research on food safety in informal markets in developing countries and on ‘zoonoses’—diseases shared by animals and people. Grace also leads a component on agriculturally related diseases of a new multi-centre CGIAR Research Program on Agriculture for Health and Nutrition, which is headed by John McDermott, former deputy director general-research at ILRI, who is now based at ILRI’s sister CGIAR institute the International Food Policy Research Institute (IFPRI), in Washington, DC, USA. Grace is also a partner in another multi-institutional initiative, called Dynamic Drivers of Disease in Africa.

A prolific writer of scientific publications and a scientist of particularly wide research interests, Grace began her ‘big-picture’ talk on zoonoses—on why, and if, they are ‘the lethal gifts of livestock’—with an overview of human health and disease at the beginning of the 21st century. Go here to read part one:  The riders of the apocalypse do not ride alone: Plagues need war, famine, destruction–and (often) livestock, ILRI News Blog, 4 Nov 2012.

Here we begin part two of this ILRI ‘livestock live talk’ presentation by Delia Grace on ‘The lethal gifts of livestock’.

Getting a handle on why zoonotic diseases matter, to whom and how much
‘So, we’ve discussed the links between livestock and disease and why livestock play such an important role in human disease. The next question we have to ask is to try and put some details on this, to put some parameters on it. So, if disease matters, and if animals have a big role in disease, what disease matters? How much? To whom? What does it cost? And what can we do about it?

‘In thinking through this, we tend to think at ILRI of different categories, which help us get more of a handle on some of the details. So we talk about the neglected zoonoses; these are the diseases like TB, brucellosis, cystercicosis—diseases that have been eradicated anywhere people have money and care, but persist—hang on—in poor countries. We talk about emerging infectious diseases—the BSEs, the SARS, the bird flus, Rift Valley fever, blue tongue—diseases that are changing their patterns and becoming more important. Then the food-borne diseases are the other big category. This is the single-most important. If you’re interested in human health and human death, food-borne diseases are the single-most important category. And finally, there are the other health risks in agro-ecosystems: How we farm and what this means for our health and nutrition.

Let the mapping begin
‘I now want to talk about some recent work we did on mapping poverty, zoonoses and emerging livestock systems in order to get a better handle on some of these questions about why it matters, who it matters to, how much it matters, and what we should or could do about it.

‘I’m going to present some work that was commissioned by DFID [the UK Department for International Development]. These were two systematic reviews that DFID asked us to do. The aim of these was to present data and expert knowledge on poverty and zoonoses hotspots in order to prioritize areas, to target areas, where prevention of zoonotic diseases can bring the greatest benefits to poor people.

‘This study took us down some interesting paths and some interesting conclusions. I’m going to talk about them in a little bit of detail.

‘So, the methods. What we wanted to do was to update global maps of poor livestock keepers. The first ever global map of poor livestock keepers was produced by ILRI around 10 or 15 years ago, again commissioned by DFID. This, I would say, was a landmark map. We also wanted to map rapidly emerging livestock systems. And here we drew a lot again on ILRI’s expertise, especially Mario Herrero’s group, which have been doing a lot of big-picture work on changes in livestock systems—what’s happening, where it’s happening and why it’s driving change. We also wanted to update one of the most iconic maps for people in the zoonoses community, and this is the map by Kate Jones on emerging infectious diseases that appeared in Nature about ten years ago (and everywhere else since).

‘We wanted to identify which were the most important zoonoses for poor people. You’d think that we’d know that, but what we find is that we have a dozen definitions and none of them agree. And then, finally, we wanted to develop the first global mapping of where zoonoses, poverty and emerging [livestock] systems come together to make hotspots, for maximum investments, for maximum bang for the buck.

Where are the poor livestock keepers?

Density of poor livestock keepers (updated 2012)

Update in 2012 by ILRI’s Delia Grace of map by ILRI’s Phil Thornton showing density of poor livestock keepers (map credit: ILRI/Philip Thornton).

‘Here is the updated map of poor livestock keepers. I think you can see by looking at it that it’s focal. The dark areas represent high density. South Asia jumps out at us. And in Africa we see the ‘magic 7’, from the coastal regions of West Africa to Nigeria and up through the highlands of Ethiopia and right down the Rift Valley through Uganda and northern Tanzania and right down to Malawi.

‘So what can we say in our updating of poor livestock keepers?

One billion poor livestock keepers depend on 19 billion livestock. Most of the livestock in the world are owned by poor people: 24 billion in total in the world and 19 billion in poor countries. That’s a lot of opportunities for disease to spill over, 19 billion animals.

What’s more, the ‘parietal law’, the law of ‘the vital few and the trivial many’, applies. Just 4 countries have 44 per cent of poor livestock keepers. All countries are not equal.

‘Livestock matter a lot: 75% of rural people, and 25% of urban people, depend on livestock. Now ‘depend’ is one of those weasel words that we keep being asked to shine more light on. We don’t know enough—it’s amazing how little we know despite how important this is—but our best guess for now is that when we say ‘depend’ we mean that livestock contribute between 2 and 33% of household income and 6 to 36% of protein. It’s not trivial.

Where are the fast-evolving livestock production systems?

Change in poultry production
Change in pig production
2012 maps showing changes in poultry and pig production between 2000 and 2030 (map credit ILRI/Delia Grace).

‘The second map we updated was these emerging livestock systems. As we suspected, most emergence is happening in the monogastrics, the pigs and the poultry. And of course this has been known since the landmark papers on the livestock revolution. Our maps confirm this; we’re getting a lot of change in pigs and poultry, and again it’s focal; you can see that it’s not uniform.

‘So in summary, where are we getting massive, rapidly changing systems? Big changes in numbers? Big changes in baselines? Where do we have people who don’t have a lot of experience doing this sort of farming now doing it in a big way? (Once you get naïveté along with massive intensification, you get problems.)

Poultry in several places on all continents, bovines in South and East Asia, and pigs in sub-Saharan Africa. These are the rapidly emerging livestock systems.

Where are the emerging infectious diseases?
‘Next, we updated the emerging infectious diseases map. This was a study that was originally done by Jones et al. based on all emerging diseases from 1940 to 2004. What we wanted to do was to focus just on zoonotic diseases (the 75% of all human disease that are zoonotic) and also to update it with data from 2004 to 2012.

Emerging Zoonotic Diseases Events 1940-2012

Map by IOZ, published in an ILRI report to DFID; Mapping of Poverty and Likely Zoonoses Hotspots 2012.

‘All of these dots represent new, potentially scary, diseases. The bigger the dot, the more the outbreaks. The new diseases are the blue circles; they are the ones that happened in the last ten years. The brown are the old; those are the ones that happened in the 70 years before. Again you can see a pattern here, but it’s not the same pattern we saw in the other map.

‘What we see is that western USA and western Europe are the hotspots for disease emergence. There’s a reporting bias in here, but we believe that this is not just reporting bias but actually represents emerging events. Interestingly, the blue events, the new events, are more common in South America and Southeast Asia, as intensification takes off in these regions and start to look more like intensive [livestock] systems of the West.

Multiple disease burdens are ‘where it’s at’
‘So, what are the high-priority zoonoses? We were interested in multiple [disease] burdens. One of the things we believe leads to bad management of zoonoses is that it’s done sectorally; it falls between lots of chairs. The World Health Organisation thinks about the human burden. The United Nations Food and Agriculture Organization thinks about the animal burden. Other people think about the wildlife burden. But people too rarely get together and think about the multiple burden.

What isn’t measured isn’t managed. And we think that one great step forward is just having people think about multiple burdens. So our listing, our criteria, consists of looking at the burdens across human health, animal health and ecosystems health.

‘From lots of listings, we assessed 56 zoonoses and found that together they caused a lot of problems. But the ones that were most important tended to have a wildlife interface, had a major impact on livestock and were amenable to on-farm agricultural interventions.

Top zoonoses calculated by ILRI's Delia Grace in 2012

Slide of ‘top zoonoses’ from ‘livestock live talk’ presentation, ‘Zoonoses: The Lethal Gifts of Livestock’, made by Delia Grace on 31 Oct 2012.

‘Just to give you some idea of the numbers, there are about 600 zoonoses and we looked at the top 50. Of that top 50, this is the human death caused by the top 13 and that by the next 43. Again, I think you can see it’s a case of the vital few and the trivial many. If you’ve got scarce resources and care about human death, you invest in the top 13, not in the bottom 43.

And here it is just broken out by individual zoonoses, and even in that top 13, you can see that there’s a difference between big killers and little killers. And sometime the ones we hear most about—and worry most about—are the ones that kill least.

‘The first thing we did then was to go to official reporting systems to try to find out where these zoonoses were and how these linked to the other things we were mapping. There are several reporting systems. There’s one by OIE [World Organisation for Animal Health], which is ‘notifiable’, that is, every OIE member has to report all their animals that die of notifiable diseases (you’d think that was easy enough). There’s also one run by FAO, and there’s Pro Med, there’s GEWS, and there’s Health Map, which is an aggregator.  That a picture of Health Map, and it’s a pretty exciting innovation. A ‘bot’ trawls the web and captures all the information on diseases.

When we put all of these [official disease reporting systems] together, what we found was that they were completely useless. They told us almost nothing about the burden of diseases. They told us about exciting things, interesting things. When a kid in Buenos Aires got bitten by a rabid dog, that showed up here. But when we were interested in what is sickening and killing billions and millions of people, it was just hopeless.

‘Just to give you an example, Africa has about 250 million tropical [aggregated] livestock units; we know that around 25 million of them die prematurely every year. We estimate around half of those deaths are due to notifiable diseases. There are over 60 notifiable diseases and pretty much everything falls into these. And what’s reported? Say 10 million dead, 80,000 reported.

This isn’t just under-reporting; this is a reporting system that is not very helpful!

‘So we couldn’t use the official reports. And it’s a huge weakness. People go along blindly and mechanically collecting this data, sending it in to OIE, doing complicated analyses showing all the different effects and impacts of these diseases, but they fail to take into account that they’re only looking at the 80,000 that are reported, and not the 920,000 that are not reported. It’s sort of an exercise in futility.

‘So what we did instead was a systematic literature review. We found that the only way we could get some sort of handle on where these zoonoses are was just to keep looking through the literature, pulling it out—grey, white, published, local language—and get as many surveys as we could and geographically map them and see what they are doing. In fact, we got over a thousand studies, which was enough to get some sort of a spatial understanding.

Greatest Burden of Zoonoses Falls on One Billion Poor Livestock Keepers

Map by ILRI, published in an ILRI report to DFID: Mapping of Poverty and Likely Zoonoses Hotspots, 2012.

‘This is what we came up with. Where you see a dot is where 1 or more people or animals in 100 are affected by 1 or more diseases per year. At least a 1%, at least 1 in 100 are sickened or killed. The dark colour shows where the poor livestock keepers are. Again, you can see the ‘7’ in Africa, whereby the zoonoses are linked to the poor livestock keepers. You can see quite a bit in South Asia and some in Southeast Asia.

‘There is a definite link between livestock keeping and poverty, which is what we suspected, but here again there is a lot of under reporting.

An unlucky 13 zoonoses sicken 2.4 billion people and kill 2.2 million people and they affect more than 1 in 7 livestock each year. These numbers are not trivial. These are large numbers, large numbers of sickness and death.

Our zoonotic problems are big problems

Multiple burdens of zoonoses calculated by ILRI's Delia Grace in 2012

Slide of ‘multiple burdens of zoonoses’ from ‘livestock live talk’ presentation, ‘Zoonoses: The Lethal Gifts of Livestock’, made by Delia Grace on 31 Oct 2012.

‘As I said, we focused on multiple burdens of  zoonoses, and here are some. I won’t read through them in detail, but again, going across all of these surveys, the numbers are frighteningly high. Round about 10% of animals have brucellosis, which is a serious disease in people, causing ungulant fever, infertility in men; it can cause psychosis and depression. And it’s transmitted in milk. If you don’t boil your milk, 1 in 10 animals has brucellosis. Ten per cent of animals in Africa have tryps [African animal trypanosomiasis], reducing their productivity by 15%. With 250 million livestock units, say they’re worth USD500 each, and you reduce their productivity by 15%—we’re talking large numbers here. TB, cysticercosis, bacterial food-borne disease, all of these came up.

‘The bad news is that it’s there and it’s a big problem in animals as well as people. The good news, of course, is that this provides incentive-based ways of tackling some of these zoonoses. Because if you can manage your animal zoonoses and boost your productivity by 10 or 20%, there’s a strong incentive for you to do it. What we’ve found with these studies (and we’ve been doing a lot of them over the years), is that too often the human health attitude is that people should do this because it’s good. You should do it to protect your own health. You should do it to protect the consumer’s health. That is one of the weakest motivations of all. How many things do we not do even though we know they’re good for our health? And how many fewer things do we do if they’re not good for our health but they’re good for someone else’s health?

Give people incentives, not rules, to better manage disease
‘What we find in these informal markets, where regulation is a joke and you have a hundred vets in a country and a hundred million animals, there’s no point in regulations or officials telling people “You should do this because it’s good for you”. It has to be incentive-based. People have to see a real benefit from changing their behaviour, either in their pocket or in their social status. And it doesn’t have to be money. We found people will change their behaviour just as much if they can get a social kick out of it. If instead of being a low-status person they get to be a high-status person, they’ll change their behaviour.

‘So, in summary what did we find? There are definite [zoonotic] hotspots, which is good, because that’s what the donor wanted  because that’s where the donor wants to invest. This is also a nice example of how science can generate evidence that is asked for by a donor and then influences donor behaviour, so it’s a virtuous cycle.

Where the ‘perfect storms’ lie
‘Poor livestock keepers? South Asia is the biggest. Emerging livestock systems? Again, South Asia. Zoonotic emerging infectious diseases? Western Europe and USA. Zoonoses? South Asia and central and eastern Africa.

If we are to name six countries where all of these come together, where you get the ‘perfect storm’ conditions, they are India, Bangladesh and Pakistan in Asia; Ethiopia, Nigeria and Congo in Africa.

‘So we’ve talked a bit about the big picture, human health and disease in the 21st century and why livestock matter. I’ve presented some of these findings of our mapping studies trying to get some evidence: the evidence that decision-makers want in a format they can use, in a way that motivates them to invest money.

‘But now, finally, I want to talk a bit about how we move from mapping to managing. . . .’

Notes
This ends part two of the seminar by Delia Grace. Look on this ILRI News Blog for part three in a couple of days’ time.

Part one of this seminar is here: The riders of the apocalypse do not ride alone: Plagues need war, famine, destruction–and (often) livestock, ILRI News Blog, 4 Nov 2012.

View the slide presentation, which is a ‘slidecast’ that includes an audio file of the presentation by Grace: Zoonoses: The lethal gifts of livestock, an ILRI ‘livestock live talk’ by Delia Grace at ILRI’s Nairobi headquarters on 31 Oct 2012.

Read the invitation to this ILRI ‘livestock live talk’, and sign up here for our RSS feed on ILR’s Clippings Blog to see future invites to this new monthly seminar series.

The riders of the apocalypse do not ride alone: Plagues need war, famine, destruction–and (often) livestock

Albrecht Dürer

a presentation made last week by Delia Grace, who works at the International Livestock Research Institute (ILRI), in Nairobi. Grace, a Irish veterinary epidemiologist, leads ILRI’s research on food safety in informal markets in developing countries and on ‘zoonoses’—diseases shared by animals and people. Grace also leads a component on agriculturally related diseases of a new multi-centre CGIAR Research Program on Agriculture for Health and Nutrition, which is headed by John McDermott, former deputy director general-research at ILRI, who is now based at ILRI’s sister CGIAR institute the International Food Policy Research Institute (IFPRI), in Washington, DC, USA. Grace is also a partner in another multi-institutional initiative, called Dynamic Drivers of Disease in Africa.

A prolific writer of scientific publications and a scientist of particularly wide research interests, Grace began her ‘big-picture’ talk on zoonoses—on why, and if, they are ‘the lethal gifts of livestock’—with an overview of human health and disease at the beginning of the 21st century.

'livestock live talk' 31 Oct 2012: Delia Grace listens to a question

Regarding diseases, it’s not the past we have to worry about, says ILRI scientist Delia Grace; it’s the diseases we’re picking up and the lifestyle choices we’re making (picture credit: ILRI/Susan MacMillan).

‘At the moment we are 7 billion people and by 2050, we’ll probably be 9 billion.

To date, farming is not doing a very good job of feeding us or looking after our health. We have 1 billion people who are hungry, 2 billion people who suffer from ‘hidden hunger’, or micronutrient deficiencies (iron, vitamins, minerals), and we 1.5 billion people who are overweight or obese. All in some ways functions of a dysfunctional agricultural system.

‘Not only does agriculture have an important role in nutrition, it also has an important role in health. And that’s going to be the main topic of my presentation.

‘But a few facts here just to get us in the mood.

‘Of our 7 billion people, 55 million die each year; 18 million die of infection. That’s preventable—there’s no reason now why anyone should die of an infectious disease. But to put that in perspective, there are lots of other preventable things that also kill people: 1.2 million people die each year in road traffic accidents, 170,000 from fatal agricultural accidents and 22,000 (and rising) from extreme weather events.

‘Of those people who die each year . . . two-thirds live in middle-income countries and most of those people die of lifestyle-associated diseases (cardio-vascular/chronic). About a sixth of those who die each year die in high-income countries, and most of them die from being just too old—they die from things like Alzheimer’s and stroke and cardiac disease, things that often come at the end of a life. And then there are the one-sixth who die in low-income countries, and what they die of are the ‘preventables’, mainly infectious diseases.

So, where do these infectious diseases come from? When we look at diseases as a whole, we can see that most are ‘earned’. The wages of sin may be death but the wages of lifestyle choice is disease.

‘The major causes of disease on this planet are the choices we make or the choices that are forced upon us: degenerative diseases, cardiac diseases, diabetes, stroke, cancer. Allergies and asthmas, which are probably reflections of a lifestyle that was not the way we were evolved to live. Those diseases are not the focus of this discussion.

‘What we are focusing on are the “souvenirs”, the diseases we pick up from other sources. And those sources are pretty much animals. Around 60 per cent of all human diseases are shared with animals, and of the new and emerging diseases, 75 per cent are “zoonotic”, that is, they come from animals. What’s more, of the 18 million people who die of infectious diseases each year, two of the biggest killers are zoonotic, or jumped from animals to people.

‘One thing that distinguishes the “souvenir” diseases is that many of these are diseases that kill people when they are young or in the prime of their life, when they have a future ahead of them.

We’re all going to die—that’s one thing that’s fairly inevitable. If we want to spend scarce resources doing something about making our planet more healthy and productive, it makes sense to invest in the souvenirs, the diseases we’ve acquired rather than these end-of-life diseases, about which nothing much can be done.

‘In fact, some economists argue it’s cheaper to let people die once they’ve reached a certain age than it is to invest in trying to make them better, because they’re not going to contribute much more to society.

The diseases that don’t matter so much we call the ‘legacies’. These are the diseases that have always been with us, the diseases that humans brought with them in their evolution from non-human primates. It’s interesting to see that these diseases (e.g., staph, lice, typhoid) are pretty much conquered. So it’s not the past we have to worry about; it’s what we’re picking up and the choices we’re making.

'livestock live talk' 31 Oct 2012: Richard Bishop asks Delia Grace a question

ILRI scientist Richard Bishop asks Delia Grace a question following her ‘livestock live talk’ on 31 Oct 2012 in Nairobi on the subject of ‘Zoonoses: The lethal gifts of livestock’ (photo credit: ILRI/Susan MacMillan).

‘So, how do these diseases get from animals into people, these 60 per cent of diseases that we share with animals? “Spillover” is the word. Here we see what we call an epidemiological or sylvatic cycle. That’s a little pathogen living in a kind of equilibrium with its wild host. By the usual evolutionary rules, once these pathogens have been living a long time with their hosts, they tend to co-evolve so that they get a little less malignant. Otherwise, if the pathogen kills all its hosts, it’s not good for its long-term survival. So what you tend to get are complex pristine ecosystems with lots of hosts and lots of pathogens, all in an evolutionary race but all staying in a relative status quo.

‘Once you bring in humans, you can get spillover. Once humans start coming into these pristine ecosystems and start messing with them—start killing lots of animals or butchering game meat or doing other things that happen when people invade pristine ecosystems—some of these pathogens can spill over into humans. What tends to happen when they first spill over is that they’re not adapted to humans: they kill them and that’s it. That’s what we tend to see with the ebola and marburg viruses; you’ve heard about these in Uganda. They spill over, they kill, that’s it. But if they get lots and lots of opportunities to spill over to people, evolution starts kicking in, too, and they now have got a new host, a new lease, so they’re going to start being able to be transmitted more readily, from human to human.

‘The other thing that can happen in these sylvatic cycles is the spillover can occur into livestock. This can be expected. Humans have contacts with wild animals, but livestock have many more. So we often see that livestock can act as a sort of bridge to bring these wild animal diseases into people. And that’s what we see with diseases such as the Nipah virus, diseases such as avian influenza and Rift Valley fever. The host is out there somewhere in the wild; often we don’t know where it is. It’s shocking to say: we still aren’t sure where the host for Rift Valley fever is, we just don’t know. But we know it gets into livestock, and from livestock it gets into people. People can be a dead-end host—the virus can get in, sicken and kill and that’s it—or the virus can gradually start adapting to humans.

‘Some of the factors that can help this transition are increasing the densities, increasing the contacts, increasing the amount of pathogen in the environment, but also other things like habitat change, biodiversity, vector density, host density.

I would argue—this is a little bit provocative and not everyone would agree—that spillovers happen all of the time and most of the time just aren’t any big deal. A lot of the present effort to control emerging infectious diseases is perhaps not well directed because we’re dealing with problems that are intrinsically self-limiting. However, when you look back at history, in order for a spillover to become a disaster—in order for a spillover to become a pandemic, a civilization-altering disease—you need something else. I think this missing ingredient is great societal dislocation.

‘And that’s what history shows. The first big transition was the Neolithic transition. I’m going to come back to that because it’s important. Other examples, from the 13th to the 15th centuries, Europe went through a little Ice Age—we talk about climate change making it hotter today; then, it got colder. People got hungry, people, starved, people moved; you got Black Death and it killed one in three.

‘When they opened up the New World and when people came to the Americas, something like 90 per cent of the population died in the Americas, from smallpox, from measles. This is what we call ‘virgin soil’ epidemics; people who had no immunity; why? because they hadn’t hung out with livestock for long enough, according to some people, so people just died in droves.

‘But it wasn’t just a disease—it was the collapse of their society, the collapse of a highly advanced, highly stable, highly functioning society. It was destroyed from the outside and the disease came in.

The riders of the Apocalypse do not ride alone. Plague by itself needs war, needs famine, needs destruction.

‘We saw the same in the First World War, with the trenches and that massive societal misery, which led to Spanish flu and 40 million dying, and colonialization and urbanization in Africa in the early 20th century leading to HIV.

Disease spillover + societal dislocation = pandemic

Slide from ‘livestock live talk’ by Delia Grace on 31 Oct 2012 (slide by ILRI/Delia Grace).

 

‘Some argue and some spend millions of dollars hearing that we are about to enter a new time of unprecedented societal dislocation. As we get massive population increases, massive climate change, massive global destruction, we’re in for another big plague.

‘Let’s look at the first epidemiological transition, just to take us back to history and to show how domestication leads to disease. The first [animal we domesticated] was the dog [15,000–30,000 BC], and some would argue that the dog domesticated us, and the last was the goose (1,500 BC), and anyone who has been chased around a farm by a goose knows that they are as yet imperfectly domesticated!

But between the dog and the goose, there’s been a long range of domestication and the animals brought disease with them, diseases we tend to think of as human diseases; measles, mumps, diptheria, flu, smallpox, they all jumped from animals, many of them from livestock.

Disease and livestock domestication

Slide from ‘livestock live talk’ by Delia Grace on 31 Oct 2012 (slide by ILRI/Delia Grace).

 

‘And of course this is a dynamic: once they jumped in they can jump back; other diseases jumped from people to livestock, and once they were in the livestock, they came back again.

‘So that was the link between livestock and disease and why livestock play such an important role in human disease.

‘The next question we have to answer is to try and put some details on this, try and put some parameters on it. If disease matters, and if animals play a big role in disease, what disease matters? how much? to whom? what does it cost? what can we do about it? . . .’

This ends part one of this ILRI ‘livestock live talk’ presentation by Delia Grace on ‘The lethal gifts of livestock’. Check back here tomorrow for part two.

Read the invitation to this ILRI ‘livestock live talk’, and sign up here for our RSS feed on ILR’s Clippings Blog to see future invites to this new monthly seminar series.

View the slide presentation: Zoonoses: The lethal gifts of livestock, an ILRI ‘livestock live talk’ by Delia Grace at ILRI’s Nairobi headquarters on 31 Oct 2012.

New ILRI study maps hotspots of human-animal infectious diseases and emerging disease outbreaks

Greatest Burden of Zoonoses Falls on One Billion Poor Livestock Keepers

Map by ILRI, published in an ILRI report to DFID: Mapping of Poverty and Likely Zoonoses Hotspots, 2012.

A new study maps hotspots of human-animal infectious diseases and emerging disease outbreaks. The maps reveal animal-borne disease as a heavy burden for one billion of world’s poor and new evidence on zoonotic emerging disease hotspots in the United States and western Europe.

The new global study mapping human-animal diseases like tuberculosis (TB) and Rift Valley fever finds that an ‘unlucky’ 13 zoonoses are responsible for 2.4 billion cases of human illness and 2.2 million deaths per year. The vast majority occur in low- and middle-income countries.

The study, which was conducted by the International Livestock Research Institute (ILRI), the Institute of Zoology (UK) and the Hanoi School of Public Health in Vietnam, maps poverty, livestock-keeping and the diseases humans get from animals, and presents a ‘top 20’ list of geographical hotspots.

From cyst-causing tapeworms to avian flu, zoonoses present a major threat to human and animal health,’ said Delia Grace, a veterinary epidemiologist and food safety expert with ILRI in Kenya and lead author of the study. ‘Targeting the diseases in the hardest hit countries is crucial to protecting global health as well as to reducing severe levels of poverty and illness among the world’s one billion poor livestock keepers.’

‘Exploding global demand for livestock products is likely to fuel the spread of a wide range of human-animal infectious diseases,’ Grace added.

According to the study, Ethiopia, Nigeria, and Tanzania in Africa, as well as India in Asia, have the highest zoonotic disease burdens, with widespread illness and death. Meanwhile, the northeastern United States, Western Europe (especially the United Kingdom), Brazil and parts of Southeast Asia may be hotspots of ’emerging zoonoses’—those that are newly infecting humans, are newly virulent, or have newly become drug resistant.

The study examined the likely impacts of livestock intensification and climate change on the 13 zoonotic diseases currently causing the greatest harm to the world’s poor.

The report, Mapping of Poverty and Likely Zoonoses Hotspots, was developed with support from the United Kingdom’s Department for International Development (DFID). The goal of the research was to identify areas where better control of zoonotic diseases would most benefit poor people. It also updates a map of emerging disease events published in the science journal Nature in 2008 by Jones et al.[i]

Remarkably, some 60 per cent of all human diseases and 75 per cent of all emerging infectious diseases are zoonotic.

Among the high-priority zoonoses studied here are ‘endemic zoonoses’, such as brucellosis, which cause the vast majority of illness and death in poor countries; ‘epidemic zoonoses’, which typically occur as outbreaks, such as anthrax and Rift Valley fever; and the relatively rare ’emerging zoonoses’, such as bird flu, a few of which, like HIV/AIDS, spread to cause global cataclysms. While zoonoses can be transmitted to people by either wild or domesticated animals, most human infections are acquired from the world’s 24 billion livestock, including pigs, poultry, cattle, goats, sheep and camels.

Poverty, zoonoses and markets
Today, 2.5 billion people live on less than USD2 per day. Nearly three-quarters of the rural poor and some one-third of the urban poor depend on livestock for their food, income, traction, manure or other services. Livestock provide poor households with up to half their income and between 6 and 35 per cent of their protein consumption. The loss of a single milking animal can be devastating to such households. Worse, of course, is the loss of a family member to zoonotic disease.

Despite the danger of zoonoses, the growing global demand for meat and milk products is a big opportunity for poor livestock keepers.

Increased demand will continue over the coming decades, driven by rising populations and incomes, urbanization and changing diets in emerging economies,’ noted Steve Staal, deputy director general-research at ILRI. ‘Greater access to global and regional meat markets could move  millions of poor livestock keepers out of poverty if they can effectively participate in meeting that  rising demand.’

But zoonoses present a major obstacle to their efforts. The study estimates, for example, that about one in eight livestock in poor countries are affected by brucellosis; this reduces milk and meat production in cattle by around 8 per cent.

Thus, while the developing world’s booming livestock markets represent a pathway out of poverty for many, the presence of zoonotic diseases can perpetuate rather than reduce poverty and hunger in livestock-keeping communities. The study found a 99 per cent correlation between country levels of protein-energy malnutrition and the burden of zoonoses.

Many poor livestock keepers are not even meeting their own protein and energy needs’, said Staal. ‘Too often, animal diseases, including zoonotic diseases, confound their greatest efforts to escape poverty and hunger.’

Assessing the burden of zoonoses
The researchers initially reviewed 56 zoonoses that together are responsible for around 2.5 billion cases of human illness and 2.7 million human deaths per year. A more detailed study was made of the 13 zoonoses identified as most important, based on analysis of 1,000 surveys covering more than 10 million people, 6 million animals and 6,000 food or environment samples.

The analysis found high levels of infection with these zoonoses among livestock in poor countries. For example, 27 per cent of livestock in developing countries showed signs of current or past infection with bacterial food-borne disease—a source of food contamination and widespread illness. The researchers attribute at least one-third of global diarrheal disease to zoonotic causes, and find this disease to be the biggest zoonotic threat to public health.

In the booming livestock sector of developing countries, by far the fastest growing sectors are poultry and pigs.

As production, processing and retail food chains intensify, there are greater risks of food-borne illnesses, especially in poorly managed systems’, said John McDermott, director of the  CGIAR Research Program on Agriculture for  Nutrition and Health, led by the International Food Policy Research Institute (IFPRI). ‘Historically, high-density pig and poultry populations have been important in maintaining and mixing influenza populations. A major concern is that as new livestock systems intensify, particularly small- and medium-sized pig production, the more intensive systems will allow the maintenance and transmission of pathogens. A number of new zoonoses, such as Nipah virus infections, have emerged in that way.’

 

Emerging Zoonotic Diseases Events 1940-2012

Map by Institute of Zoology (IOZ), published in an ILRI report to DFID: Mapping of Poverty and Likely Zoonoses Hotspots, 2012.


Intensification and disease spread
The most rapid changes in pig and poultry farming are expected in Burkina Faso and Ghana in Africa and India, Myanmar and Pakistan in Asia. Pig and poultry farming is also intensifying more rapidly than other farm commodity sectors, with more animals being raised in more concentrated spaces, which raises the risk of disease spread.

Assessing the likely impacts of livestock intensification on the high-priority zoonoses, the study found that livestock density is associated more with disease ‘event emergence’ than with overall disease burdens. Both the northeastern United States and Western Europe have high densities of livestock and high levels of disease emergence (e.g., BSE, or ‘mad cow’ disease, and Lyme disease), but low numbers of people falling sick and dying from zoonotic diseases. The latter is almost certainly due to the relatively good disease reporting and health care available in these rich countries.

Bovine tuberculosis is a good example of a zoonotic disease that is now rare in both livestock and human populations in rich countries but continues to plague poor countries, where it infects about 7 per cent of cattle, reducing their production by 6 per cent. Most infected cattle have the bovine form of TB, but both the human and bovine forms of TB can infect cows and people. Results of this study suggest that the burden of zoonotic forms of TB may be underestimated, with bovine TB causing up to 10 per cent of human TB cases. Human TB remains one of the most important and common human diseases in poor countries; in 2010, 12 million people suffered from active disease, with 80 per cent of all new cases occurring in 22 developing countries.  

Massive underreporting

We found massive underreporting of zoonoses and animal diseases in general in poor countries’, said Grace. ‘In sub-Saharan Africa, for example, 99.9 per cent of livestock losses do not appear in official disease reports. Surveillance is not fulfilling its purpose.’

The surveillance lacking today will be even more needed in the future, as the climate changes, she added. Previous research by ILRI and others indicates that areas with increased rainfall and flooding will have increased risk of zoonoses, particularly those diseases transmitted by insects or associated with stagnant water or flooding.

The main finding of the study is that most of the burden of zoonoses and most of the opportunities for alleviating zoonoses lie in just a few countries, notably Ethiopia, Nigeria, and India. These three countries have the highest number of poor livestock keepers, the highest number of malnourished people, and are in the top five countries for both absolute numbers affected with zoonoses and relative intensity of zoonoses infection.

‘These findings allow us to focus on the hotspots of zoonoses and poverty, within which we should be able to make a difference’, said Grace.

Read the whole report: Mapping of poverty and likely zoonoses hotspots, report to the UK Department for International Development by Delia Grace et al., ILRI, Institute of Zoology, Hanoi School of Public Health, 2012.

Read about the report in an article in NatureCost of human-animal disease greatest for world’s poor, 5 Jul 2012. Nature doi:10.1038/nature.2012.10953

 


[i] Nature, Vol 451, 990–993, 21 February 2008, Global trends in emerging infectious diseases, Kate E Jones, Nikkita G Patel, Marc Levy, Adam Storeygard, Deborah Balk, John L Gittleman and Peter Daszak.

Animal plagues: ‘The lethal gift of livestock’

List of reported bird flu outbreaks, May 11 through August 27, 2005

List of reported bird flu outbreaks from 11 May through 27 August 2005 (map on Flickr by Brooke Ganz/Asparagirl).

Two veterinary epidemiologists working at the International Livestock Research Institute (ILRI) recently published a fascinating look at the state of ‘livestock plagues’ that can, and regularly are, transmitted to human populations.

The two authors are John McDermott, who has since moved from ILRI to the International Food Policy Research Institute, where he leads a new CGIAR Research Program on ‘Agriculture for Better Nutrition and Health’, and Delia Grace, who remains at ILRI and leads the health components of this new program.

Introduction to this ILRI essay
‘Since the widespread domestication of animals in the Neolithic era, 10,000–15,000 years before the Common Era (CE), human livelihoods have been inextricably linked with the livestock they keep. Domesticated animals must have been among the most valued assets of ancient humans: walking factories that provided food, fertiliser, power, clothing, building materials, tools and utensils, fuel, power and adornments. Inevitably, the innovations of crop cultivation and food storage that allowed people to settle and live in high numbers and densities also increased the number of animals kept, density of livestock population and the intimacy of human-animal interactions. Pathogens responded, undergoing intense genomic change to seize these dramatically expanded opportunities.

Epidemics of highly contagious and lethal disease emerged, as livestock and people reached the critical population sizes needed for acute infections to persist. Diseases also jumped species from animal to humans: the lethal gift of livestock.

‘This chapter discusses which livestock epidemics are likely to constitute a disaster and why. . . .

Conclusion of the ILRI chapter
‘The struggle with epizootics continues and has even intensified in recent times. Population-decimating animal plagues, such as contagious bovine pleuropneumonia, peste des petits ruminants, swine fever, Newcastle disease and avian influenza, continue to have lethal and devastating impacts on livestock and livelihoods.

Livestock plagues are also shifting and emerging while climate change, urbanisation, migrations, genetically modified crops and rapid land use changes are examples of wild cards which could alter the present distribution for the disease dramatically for the worse.

The declaration of an era of epidemics, though, might be premature. In richer countries, dependence on livestock is low, resources exist to effectively control disease and non-communicable diseases associated with modern farming systems (such as lameness and reproductive problems) production pose the greatest problem to animal health.

‘In the developing world, the situation is different. Many people depend on animal agriculture: 700 million people keep livestock and up to 40 per cent of household income depends on livestock. Animal and human disease outbreaks are far more frequent, both for infections well controlled elsewhere and for emerging diseases.

In the poorest countries in Africa, livestock plagues that were better controlled in the past are regaining ground. Paradoxically, the fear of epizootics is much higher among the worried well in rich countries, who are highly concerned about the diseases they are very unlikely to fall sick or die of.

Thankfully this enlightened self-interest is providing more support for control of epizootics in poor countries. But it appears that while the centralised control of livestock plagues is effective (albeit, at high-cost) in richer countries, it struggles in the poorest. New approaches are not only needed but need to be rapidly tested and made available. What is required now is the vision and courage to transcend sectoral and conventional veterinary approaches and apply innovations to these urgent problems.’

Read the whole ILRI essay, which has been published as a chapter titled ‘Livestock epidemic’, freely available here on ILRI’s Mahider document repository, in a book by Routledge: Handbook of Hazards and Disaster Risk Reduction, edited by Ben Wisner, JC Gaillard , Ilan Kelman, published December 2011, 880 pages (hardback: 978-0-415-59065-5: USD240.00).

 

A pig from Western Kenya

A People, Animals and their Zoonoses (PAZ) project of the University of Edinburgh and ILRI is investigating the role played by pigs in transmitting zoonotic diseases and the risk factors for human infection in western Kenya (photo credit: ILRI/University of Edinburgh/Lian Doble).

Lorren Alumasa, ILRI clinical technician with the PAZ project collecting blood sample from a study participant

Lorren Alumasa, ILRI clinical technician with the People, Animals and their Zoonoses project (PAZ), collects blood sample from a study participant. The PAZ project investigates the role played by pigs in transmitting zoonotic diseases and the risk factors for human infection in western Kenya (photo credit: ILRI/Lorren Alumasa).

About the Handbook
The Handbook provides a comprehensive statement and reference point for hazard and disaster research, policy making, and practice in an international and multi-disciplinary context. It offers critical reviews and appraisals of current state of the art and future development of conceptual, theoretical and practical approaches as well as empirical knowledge and available tools. Organized into five inter-related sections, this Handbook contains sixty-five contributions from leading scholars. Section one situates hazards and disasters in their broad political, cultural, economic, and environmental context. Section two contains treatments of potentially damaging natural events/phenomena organized by major earth system. Section three critically reviews progress in responding to disasters including warning, relief and recovery. Section four addresses mitigation of potential loss and prevention of disasters under two sub-headings: governance, advocacy and self-help, and communication and participation. Section five ends with a concluding chapter by the editors.

Livestock Exchange guides ILRI’s research on livestock

LiveSTOCK Exchange LogoOn 9 and 10 November 2011, the International Livestock Research Institute (ILRI) Board of Trustees hosted a 2-day ‘liveSTOCK Exchange’ in Addis Ababa to discuss and reflect on livestock research for development. It was designed to contribute to the development of ILRI’s strategy in 2012 (see the current strategy). The event brought together about 130 participants from ILRI as well as from research and development partners.

The event was organized in six sessions

  • Livestock market opportunities for the poor: Value chain development, demand for livestock products, market-driven uptake of livestock technologies, market access and sanitary and phytosanitary (SPS) requirements … See a presentation and related issue briefs
  • Livestock impact pathways: In a session on livestock impact pathways, participants discussed ways to enhance ILRI efforts on capacity development, knowledge, gender, communication, partnerships and innovation platforms. Watch video feedback from the group discussion

Besides the rich discussions, what else came out from the event?

We prepared 19 short issue briefs synthesizing our work in the various areas. Some 30 short reflections and think pieces were also contributed by staff, partners and former staff. These are all accessible on the ILRI Clippings blog – also in ‘PDF format’ in our repository.

Hard seat interview: Brian Perry and Segenet KelemuBetween the sessions, we organized three ‘hard seat’ interviews; read – and see – them here:

The liveSTOCK Exchange also marked the leadership and contributions of Dr. Carlos Seré as ILRI Director General. During the meeting, Carlos reflected on his tenure saying “In some ways ILRI is very different from what it was 10 years ago; in other ways, it still is very much the same.” read the full blog post here and See photos of Carlos in this flickr set

This post is based on a draft prepared by Zerihun Sewunet at ILRI

CGIAR research coalition approves six programs to boost global food security

CGIAR Research Program 3.7 on livestock and fish

The developing world’s supplies of wheat, livestock, fish, roots, tubers, and bananas, along with the nutrition of its poorer communities and the food policies of its governments, should be enhanced in the coming years by new funding approved by the Consultative Group on International Agricultural Research (CGIAR), the world’s largest international agriculture research coalition.

The CGIAR has approved six new programs, totalling some USD957 million, aimed at improving food security and the sustainable management of the water, soils and biodiversity that underpin agriculture in the world’s poorest countries. The newly created CGIAR Fund is expected to provide USD477.5 million, with the balance of the support needed likely to come from bilateral donors and other sources.

The six programs focus on sustainably increasing production of wheat, meat, milk, fish, roots, tubers and bananas; improving nutrition and food safety; and identifying the policies and institutions necessary for smallholder producers in rural communities, particularly women, to access markets.

The programs are part of the CGIAR’s bold effort to reduce world hunger and poverty while decreasing the environmental footprint of agriculture. They will target regions of the world where recurrent food crises—combined with the global financial meltdown, volatile energy prices, natural resource depletion, and climate change—undercut and threaten the livelihoods of millions of poor people.

‘More and better investment in agriculture is key to lifting the 75 per cent of poor people who live in rural areas out of poverty,’ said Inger Andersen, CGIAR Fund Council chair and World Bank vice-president for sustainable development. ‘Each of these CGIAR research programs addresses issues that are fundamental to the well-being of poor farmers and consumers in developing countries. Supporting such innovations is key to feeding the nearly one billion people who go to bed hungry every night.’ CGIAR Fund members include developing and industrialized country governments, foundations and international and regional organizations.

Each of the research programs, proposed by the Montpellier-based CGIAR Consortium of International Agricultural Research Centers, is working on a global scale by combining the efforts and expertise of multiple members of the CGIAR Consortium and involving some 300–600 partners from national agricultural research systems; advanced research institutes; non-governmental, civil society and farmer organizations; and the private sector. By working in partnership on such a large scale, the CGIAR-plus=partners effort is unprecedented in size, scope of the partnerships and expected impact.

The six new programs, each implemented by a lead centre from the CGIAR Consortium, join five other research endeavours approved by the CGIAR in the past nine months (on rice, climate change, forests, drylands, and maize) as part of the CGIAR’s global focus on reducing poverty, improving food security and nutrition and sustainably managing natural resources. Each of the six programs described below was approved with an initial three-year budget.

CGIAR Research Program 3.7 on livestock and fish

Meat, Milk and Fish (USD119.7m) will increase the productivity and sustainability of small-scale livestock and fish systems to make meat, milk and fish more profitable for poor producers and more available and affordable for poor consumers. Some 600 million rural poor keep livestock while fish—increasingly derived from aquaculture—provide more than 50 per cent of animal protein for 400 million poor people in Africa and South Asia. This program will be led by the International Livestock Research Institute (ILRI), based in Africa.

Agriculture for Improved Nutrition and Health (USD191.4m) is designed to leverage agriculture improvements to deal with problems related to health and nutrition. It is based on the premise that agricultural practices, interventions and policies can be better aligned and redesigned to maximize health and nutrition benefits and reduce health risks. The program will address the stubborn problems of under-nutrition and ill-health that affect millions of poor people in developing countries. Focus areas include improving the nutritional quality and safety of foods in poor countries, developing biofortified foods and generating knowledge and techniques for controlling animal, food and water-borne diseases. This program will be led by the International Food Policy Research Institute (IFPRI), based in the USA, with the health aspects led by ILRI.

Wheat (USD113.6m) will create a global alliance for improving productivity and profitability of wheat in the developing world, where demand is projected to increase by 60 per cent by 2050 even as climate change could diminish production by 20 to 30 per cent. Accounting for a fifth of humanity’s food, wheat is second only to rice as a source of calories for developing-country consumers and is the number one source of protein.

Aquatic Agriculture Systems (USD59.4m) will identify gender-equitable options to improve the lives of 50 million poor and vulnerable people who live in coastal zones and along river floodplains by 2022. More than 700 million people depend on aquatic agricultural systems and some 250 million live on less than USD1.25 per day. The program will explore the interplay between farming, fishing, aquaculture, livestock and forestry with efforts focused on linking farmers to markets for their agricultural commodities.

Policies, Institutions and Markets (USD265.6m) will identify the policies and institutions necessary for smallholder producers in rural communities, particularly women, to increase their income through improved access to and use of markets. Insufficient attention to agricultural markets and the policies and institutions that support them remains a major impediment to alleviating poverty in the developing world, where in most areas farming is the principal source of income. This initiative seeks to produce a body of new knowledge that can be used by decision-makers to shape effective policies and institutions that can reduce poverty and promote sustainable rural development.

Roots, Tubers and Bananas (USD207.3m) is designed to improve the yields of farmers in the developing world who lack high-quality seed and the tools to deal with plant disease, plant pests and environmental challenges. Over 200 million poor farmers in developing countries are dependent on locally grown roots, tubers and bananas for food security and income, which can provide an important hedge against food price shocks. Yet yield potentials are reduced by half due to poor quality seed, limited genetic diversity, plant pests and disease and environmental challenges.

‘These programs mark a new approach to collaborative research for development,’ said Carlos Perez del Castillo, CGIAR Consortium Board Chair. ‘They bring together the broadest possible range of organizations to ensure that research leads to development and real action that improves people’s lives.’

Note: The Consultative Group on International Agricultural Research (CGIAR) is a global partnership that unites organizations engaged in research for sustainable development with the funders of this work. The funders include developing- and industrialized-country governments, foundations and international and regional organizations. The work they support is carried out by 15 members of a Consortium of International Agricultural Research Centers, in close collaboration with hundreds of partner organizations, including national and regional research institutes, civil society organizations, academia and the private sector.

Adapting agriculture to improve human health–new ILRI policy brief

A sleeping sickness patient in Soroti, Uganda

A child with sleeping sickness undergoes lengthy recovery treatment at a sleeping sickness clinic in Soroti, Uganda (photo credit: ILRI).

John McDermott, a Canadian deputy director general for research at the International Livestock Research Institute (ILRI) and a veterinary epidemiologist by training, and Delia Grace, an Irish veterinary epidemiologist working in food safety and many other areas of livestock health, have written a new policy brief on agriculture-associated diseases.

This policy brief has recently been disseminated by McDermott and Grace at an international conference on the agriculture, nutrition and health interface in New Delhi and a conference on the ‘One Health’ approach to tackling human and animal health, held in Melbourne.

McDermott and Grace argue that the way we approach agriculture does not serve human interests as a whole. ‘In the past, agricultural research and development largely focused on improving the production, productivity and profitability of agricultural enterprises. The nutritional and other benefits of agriculture were not always optimized, while the negative impacts on health, well-being and the environment were often ignored. This was especially problematic for livestock systems, with especially complex negative and positive impacts on human health and well-being.’

They give as an example a side effect of agricultural intensification: disease. ‘Highly pathogenic avian influenza (HPAI) is a notorious example of a disease that was fostered by intensified agricultural production and spread through lengthened poultry value chains and the global movement of people and animals. Large-scale irrigation projects, designed to increase agriculture productivity, have created ecosystems conducive to schistosomiasis and Rift Valley fever.’

And the reason we fail to foresee the negative effects of some agricultural practices, they say, is because the responses to disease threats are often compartmentalized. ‘Instead of analysing the tradeoffs between agricultural benefits and risks, the agriculture sector focuses on productivity, while the health sector focuses on managing disease. A careful look at the epidemiology of diseases associated with agriculture, and past experience of control efforts, shows that successful management must be systems-based rather than sectorally designed.’

‘At least 61% of all human pathogens are zoonotic (transmissible between animals and people),’ they write, ‘and zoonoses make up 75% of emerging infectious diseases. A new disease emerges every four months; many are trivial, but HIV, SARS, and avian influenza illustrate the huge potential impacts. Zoonoses and zoonotic diseases recently emerged from animals are responsible for 7% of the total disease burden in least-developed countries.

‘As well as sickening and killing billions of people each year, these diseases damage economies, societies and environments. While there is no metric that captures the full cost of disease, assessments of specific disease outbreaks suggest the scale of potential impacts. . . .

‘. . . There are two broad scenarios that characterize poor countries. At one extreme are neglected areas that lack even the most basic services; in these “cold spots,” diseases persist that are controlled elsewhere, with strong links to poverty, malnutrition and powerlessness. At the other extreme are areas of rapid intensification, where new and often unexpected disease threats emerge in response to rapidly changing practices and interactions between people, animals and ecosystems. These areas are hot spots for the emergence of new diseases (of which 75% are zoonotic). They also are more vulnerable to food-borne disease, as agricultural supply chains diversify and outpace workable regulatory mechanisms.

‘. . . What cannot be measured cannot be effectively and efficiently managed. Addressing agriculture-associated disease requires assessing and prioritizing its impacts, by measuring not only the multiple burdens of disease but also the multiple costs and benefits of potential interventions—across health, agriculture and other sectors. . . .

‘But these assessment tools and results have rarely been integrated to yield a comprehensive assessment of the health, economic and environmental costs of a particular disease. . . .

‘The complexities of agriculture-associated diseases call for more integrated and comprehensive approaches to analyse and address them, as envisioned in One Health and Eco- Health perspectives . . . . These integrated approaches offer a broad framework for understanding and addressing complex disease: they bring together key elements of human, animal and ecosystem health; and they explicitly address the social, economic and political determinants of health. Both of these global approaches recognize agriculture- and ecosystem-based interventions as a key component of multi-disciplinary approaches for managing diseases. For example, food-borne disease requires management throughout the field-to-fork risk pathway. Zoonoses in particular cannot be controlled, in most cases, while disease remains in the animal reservoir. Similarly, agriculture practices that create health risks require farm-level intervention.

‘Systemic One Health and EcoHealth approaches require development and testing of methods, tools and approaches to better support management of the diseases associated with agriculture. The potential impacts justify the substantial investment required. . . .

‘As a basis for framing sound policies, information is needed on the multiple (that is, cross-sectoral) burdens of disease and the multiple costs and benefits of control, as well as the sustainability, feasibility and acceptability of control options. An example of cross-disciplinary research that effectively influenced policy is the case of smallholder dairy in Kenya. In the light of research by ILRI and partners, assessing both public health risks and poverty impacts of regulation, the health regulations requiring pasteurization of milk were reversed; the economic benefits of the change were later estimated at USD26 million per year. This positive change required new collaboration between research, government and non-governmental organizations and the private sector, as well as new ways of working . . . .

‘Many agriculture-associated diseases are characterized by complexity, uncertainty and high-potential impact. They call for both analytic thinking, to break problems into manageable components that can be tackled over time, and holistic thinking, to recognize patterns and wider implications as well as potential benefits.

‘The analytic approach is illustrated in the new decision-support tool developed to address Rift Valley fever in Kenya. In savannah areas of East Africa, climate events trigger a cascade of changes in environment and vectors, causing outbreaks of Rift Valley fever among livestock and (ultimately) humans. Improving information on step-wise events can lead to better decisions about whether, when, where and how to institute control . . . .

‘An example of holistic thinking is pattern recognition applied to disease dynamics, recognizing that emerging diseases have multiple drivers. A synoptic view of apparently unrelated health threats—the unexpected establishment of chikungunya fever in northern Italy, the sudden appearance of West Nile virus in North America, the increasing frequency of Rift Valley fever epidemics in the Arabian Peninsula, and the emergence of bluetongue virus in northern Europe—strengthens the suspicion that a warming climate is driving disease expansion generally.

‘Complex problems often benefit from a synergy of various areas of expertise and approaches. . . . Complex problems also require a longer term view, informed by the understanding that short-term solutions can have unintended effects that lead to long-term problems—as in the case of agricultural intensification fostering health threats. . . .

‘New, integrative ways of working on complex problems, such as One Health and EcoHealth, require new institutional arrangements. The agriculture, environment and health sectors are not designed to promote integrated, multi-disciplinary approaches to complex, cross-sectoral problems. But many exciting initiatives provide examples of successful institutional collaboration. . . .

‘Agriculture and health are intimately linked. Many diseases have agricultural roots—food-borne diseases, water-associated diseases, many zoonoses, most emerging infectious diseases, and occupational diseases associated with agrifood chains. These diseases create an especially heavy burden for poor countries, with far-reaching impacts. This brief views agriculture-associated disease as the dimension of public health shaped by the interaction between humans, animals and agro- ecoystems. This conceptual approach presents new opportunities for shaping agriculture to improve health outcomes, in both the short and long terms.

‘Understanding the multiple burdens of disease is a first step in its rational management. As agriculture-associated diseases occur at the interface of human health, animal health, agriculture and ecosystems, addressing them often requires systems-based thinking and multi-disciplinary approaches. These approaches, in turn, require new ways of working and institutional arrangements. Several promising initiatives demonstrate convincing benefits of new ways of working across disciplines, despite the considerable barriers to cooperation.’

Read the whole ILRI policy brief by John McDermott and Delia Grace: Agriculture-associated diseases: Adapting agriculture to improve human health, February 2011.

A new, converging, world–Hans Rosling on the good news of the world’s health and wealth

Swedish global health researcher Hans Rosling, of TedTalk ‘animated data’ fame, happens to have agriculture, health and nutrition in low-income countries as his life-long research focus.

It was thus inspired of the International Food Policy Research Institute (IFPRI) to video-tape him for their Delhi conference this week, Leveraging Agriculture for Improving Nutrition and Health, introducing his passionate presentation of animated data on the progress the world’s countries have made over the last 200 years in terms of the length of their lifespans.

Just six decades ago, in 1948, Rosling explains, today’s Asia giants were still sick and poor. The world today, he says, still has huge differences between ‘the best and worst countries’, as well as huge inequalities within countries: China’s rich Shanghai Province, he says (and shows), has a level of health and wealth on a par with Italy, while China’s rural parts are on a level similar to that of Ghana, in West Africa.

‘Despite the enormous disparities today,’ he says, ‘we have seen 200 years of remarkable progress. That huge and historical gap between the West and the rest is now closing. We have become an entirely new, converging, world.’

Rosling ends his presentation with optimism. ‘I see a clear trend into the future, with aid, trade, green technology and peace, it’s fully possible that everybody can make it to the healthy, wealthy corner.’

Who can argue with that? Watch the video below.

Seeing the beast whole: When holistic approaches ‘come out of Powerpoints’ for better health

Purvi Mehta, Capacity Strengthening Officer

Head of capacity strengthening ILRI, Purvi Mehta-Bhatt delivered a lively presentation yesterday in New Delhi explaining how capacity building is an ‘impact pathway’ linking agriculture, nutrition and health for human well being (photo credit: ILRI).

Yesterday in New Delhi, Purvi Mehta-Bhatt, head of Capacity Strengthening at the International Livestock Research Institute (ILRI), was one of three speakers to make a presentation during a side session at the international conference ‘Leveraging Agriculture for Improving Nutrition and Health’ being put on this week by the International Food Policy Research Institute (IFPRI).

Saying it was ‘great to be home, in India’, Mehta-Bhatt, who is an Indian national based at ILRI’s Nairobi headquarters, started her 12-minute talk by getting down to basics—the basics of an elephant, that is. She told a ‘small story’ of an elephant that landed in a land where nobody had seen an elephant before. Everyone looked at this new beast in different ways, each seeing only a part of the animal. Even though all were looking at the same object, each interpreted the beast very differently, according to the small part they could see of it and according to their own interpretations. ‘This is pretty much the story of the three sectors we are talking about—agriculture, nutrition and health,’ said Mehta-Bhatt.  ‘We are all in our own silos’, she said, and need to see the beast whole.

Mehta-Bhatt sees capacity strengthening work as an important ‘impact pathway in linking these three sectors together’.

‘A piecemeal approach won’t work,’ she warned.  And although ‘this is nothing new’, she said, we still have limited capacity and understanding in this area, and only a few concrete case studies to show where linking different stakeholders in a health outcome has worked. As someone recently complained to her, it’s all very well talking about bringing all stakeholders together, but when has that ever ‘come out of Powerpoints’?

‘Capacity development is not just about training programs,’ says Mehta-Bhatt; ‘it goes beyond individual capacity building; it brings in systemic cognizance and impinges on institutional architecture, and all this happens in a process of co-learning, where messages are taken both from lab to land and from land to lab.’

Among ongoing ILRI initiatives that make use of multi-national, multi-disciplinary and multi-sectoral capacity building approaches are an ILRI-implemented Participatory Epidemiology Network for Animal and Public Health (PENAPH) with seven partners; a NEPAD-sponsored Biosciences eastern and central Africa Hub facility managed by ILRI in Nairobi and hosting many students from the region; a Stone Mountain Global Capacity Development Group of 11 members that is mapping existing capacities in the field of ‘one-health’ and co-led by the University of Minnesota and ILRI; and an EcoZD project coordinated by ILRI that is taking ecosystem approaches to the better management of zoonotic emerging infectious diseases in six countries of Southeast Asia and helping to set up two regional knowledge resource centres at universities in Indonesia and Thailand.

All of these projects, she explained, have capacity strengthening as a centrepiece; all are working with, and building on, what is already existing at the local and regional levels; and all are being conducted in a process of co-learning.

Mehta-Bhatt finished by finishing her elephant story. Capacity development, and collective action for capacity development, she said, can link the three sectors—agriculture, nutrition and health—allowing them not only ‘to recognize the elephant as a whole but to ride it as well.’

Watch the presentation by Purvi Mehta-Bhatt here:

Livestock boom risks aggravating animal ‘plagues,’ poses growing threat to food security and health of world’s poor

Shepherd in Rajasthan, India

Research released at conference calls for thinking through the health impacts of agricultural intensification to control epidemics that are decimating herds and endangering humans (Picture credit: ILRI/Mann).

Increasing numbers of domestic livestock and more resource-intensive production methods are encouraging animal epidemics around the world, a problem that is particularly acute in developing countries, where livestock diseases present a growing threat to the food security of already vulnerable populations, according to new assessments reported today at the International Conference on Leveraging Agriculture for Improving Nutrition & Health in New Delhi, India.

‘Wealthy countries are effectively dealing with livestock diseases, but in Africa and Asia, the capacity of veterinary services to track and control outbreaks is lagging dangerously behind livestock intensification,’ said John McDermott, deputy director general for research at the International Livestock Research Institute (ILRI), which spearheaded the work. ‘This lack of capacity is particularly dangerous because many poor people in the world still rely on farm animals to feed their families, while rising demand for meat, milk and eggs among urban consumers in the developing world is fueling a rapid intensification of livestock production.’

The global conference (http://2020conference.ifpri.info), organized by the International Food Policy Research Institute, brings together leading agriculture, nutrition and health experts to assess ways to increase agriculture’s contribution to better nutrition and health for the world’s most vulnerable people.

The new assessments from ILRI spell out how livestock diseases present ‘double trouble’ in poor countries. First, livestock diseases imperil food security in the developing world (where some 700 million people keep farm animals and up to 40 percent of household income depends on them) by reducing the availability of a critical source of protein. Second, animal diseases also threaten human health directly when viruses such as the bird flu (H5N1), SARS and Nipah viruses ‘jump’ from their livestock hosts into human populations.

McDermott is a co-author with Delia Grace, a veterinary and food safety researcher at ILRI, of a chapter on livestock epidemics in a new book called ‘Handbook of Hazards and Disaster Risk Reduction.’ This chapter focuses on animal plagues that primarily affect livestock operations—as opposed to human populations—and that are particularly devastating in the developing world.

‘In the poorest regions of the world, livestock plagues that were better controlled in the past are regaining ground,’ they warn, with ‘lethal and devastating impacts’ on livestock and the farmers and traders that depend on them. These ‘population-decimating plagues’ include diseases that kill both people and their animals and destroy livelihoods.

Livestock-specific diseases include contagious bovine ‘lung plague’ of cattle, buffalo and yaks, peste des petits ruminants (an acute respiratory ailment of goats and sheep), swine fever (‘hog cholera’) and Newcastle disease (a highly infectious disease of domestic poultry and wild birds). The world’s livestock plagues also include avian influenza (bird flu) and other ‘zoonotic’ diseases, which, being transmissible between animals and people, directly threaten human as well as animal health.

McDermott and Grace warn that new trends, including rapid urbanization and climate change, could act as ‘wild cards,’ altering the present distribution of diseases, sometimes ‘dramatically for the worse.’ The authors say developing countries need to speed up their testing and adoption of new approaches, appropriate for their development context, to detect and then to stop or contain livestock epidemics before they become widespread.

In a separate but related policy analysis to be presented at the New Delhi conference, McDermott and Grace focus on links between agricultural intensification and the spread of zoonotic diseases. The researchers warn of a dangerous disconnect: the agricultural intensification now being pursued in the developing world, they say, is typically focused on increasing food production and profitability, while potential effects on human health remain ‘largely ignored.’

A remarkable 61 percent of all human pathogens, and 75 percent of new human pathogens, are transmitted by animals, and some of the most lethal bugs affecting humans originate in our domesticated animals. Notable examples of zoonotic diseases include avian influenza, whose spread was primarily caused by domesticated birds; and the Nipah virus infection, which causes influenza-like symptoms, often followed by inflammation of the brain and death, and which spilled over to people from pigs kept in greater densities by smallholders.

The spread and subsequent establishment of avian influenza in previously disease-free countries, such as Indonesia, was a classic example, McDermott and Grace say, of the risks posed by high-density chicken and duck operations and long poultry ‘value chains,’ as well as the rapid global movement of both people and livestock. In addition, large-scale irrigation aimed at boosting agricultural productivity, they say, has created conditions that facilitate the establishment of the Rift Valley fever virus in new regions, with occasional outbreaks killing hundreds of people along with thousands of animals.

The economic impacts of such zoonotic diseases are enormous. The World Bank estimates that if avian influenza becomes transmissible from human to human, the potential cost of a resulting pandemic could be USD3 trillion. Rich countries are better equipped than poor countries to cope with new diseases—and they are investing heavily in global surveillance and risk reduction activities—but no one is spared the threat as growing numbers of livestock and easy movement across borders increase the chances of global pandemics.

But while absolute economic losses from livestock diseases are greater in rich countries, the impact on the health and livelihoods of people is worse in poor countries. McDermott and Grace point out, for example, that zoonotic diseases and food-borne illnesses associated with livestock account for at least 16 percent of the infectious disease burden in low-income countries, compared to just 4 percent in high-income nations.

Yet despite the great threats posed by livestock diseases, McDermott and Grace see a need for a more intelligent response to outbreaks that considers the local disease context as well as the livelihoods of people. They observe that ‘while few argue that disease control is a bad thing, recent experiences remind us that, if livestock epidemics have negative impacts, so too can the actions taken to control or prevent them.’

An exclusive focus on avian influenza preparedness activities in Africa relative to other more important disease concerns, they point out, invested scarce financial resources to focus on a disease that, due to a low-density of chicken operations and scarcity of domestic ducks, is unlikely to do great damage to much of the continent. And they argue that a wholesale slaughter of pigs in Cairo instituted after an outbreak of H1N1 was ‘costly and epidemiologically pointless’ because the disease was already being spread ‘by human-to-human transmission.’

McDermott and Grace conclude that to build surveillance systems able to detect animal disease outbreaks in their earliest stages, developing countries will need to work across sectors, integrating veterinary, medical, and environmental expertise in ‘one-health’ approaches to assessing, prioritizing and managing the risks posed by livestock diseases.

More information on why animals matter to health and nutrition: https://cgspace.cgiar.org/handle/10568/3152 and https://cgspace.cgiar.org/handle/10568/3149

Edinburgh-Wellcome-ILRI project addresses neglected zoonotic diseases in western Kenya

Woman Feeding Cow

‘Neglected diseases are diseases of neglected peoples’—Eric Fèvre

Animals and people live close together throughout the developing world. Chickens, goats, pigs, cows and other farmed animals range freely in and out of rural homesteads as families go about their daily lives. This space-sharing by people and their livestock makes good use of the small plots of land managed by the world’s many smallholder farmers; food that might otherwise go to waste can be fed to the animals, for example, while animal manure feeds the cropland by fertilizing it. Most of the world’s smallholder farmers depend on their animals for milk, meat and eggs to feed their families, with the surplus generating much-needed regular household income.

However, such close proximity to their animals puts many people at risk of ‘zoonotic’ diseases, which are those transmitted between people and animals. Remarkably, more than 60% of all human diseases are infections they can get from animals and more than 70% of today’s emerging diseases, such as bird flu, are zoonotic.

Because human and animal health are particularly intertwined in poor countries where people and livestock live in such close proximity, efforts to improve human health in the developing world need to focus on improving animal as well as human health. This makes it necessary for medical and veterinary experts to collaborate and for livestock farmers and herders to be made aware of the disease risks their animals pose to the health of their households.

A project begun in 2009 and funded by the Wellcome Trust, with other support from the International Livestock Research Institute (ILRI), is studying neglected zoonotic diseases and their epidemiology to raise levels of health in poor rural communities. The project, People, Animals and Their Zoonoses, is based in Kenya’s Busia District, which sits on the country’s western border, with Uganda.

Eric Fèvre, who is working jointly for the International Livestock Research Institute (ILRI) and the University of Edinburgh, is the project’s principal investigator and leader. Fèvre says this study is important.

‘Zoonotic diseases are a great burden on poor communities’, Fèvre says. ‘In a poor household where animals and people are in regular close contact, there is a significant chance of zoonotic diseases spreading. Typically in such areas, animals have access to human waste, there is little preventative health services for livestock and there is poor-quality food and forage for people and animals.’

With insufficient and/or unreliable health infrastructure and with many poor people not readily seeking professional medical attention, these diseases often go underreported or misdiagnosed. Complicating and aggravating this already serious health situation, he says, is that ‘in some cases, other non-zoonotic infections may already be present.’

Furthermore, as reported in the May 2010 issue of Veterinary Record, Fèvre says:

‘While malaria is undoubtedly a very serious health issue, its overdiagnosis hides many other problems. To compound this, people in marginalised communities can easily fall off the policy radar – many may be born, live and die without official record being made of them and, as such, they have a weak, or nonexistent, political voice. Thus, while the diseases are grouped as “neglected zoonotic diseases,” it would be equally correct to identify them as “diseases of neglected populations”.’

The Kenya zoonotic study is a four-year project that brings together ILRI scientists in Kenya with researchers from the School of Biological Sciences at the University of Edinburgh and from the Kenya Medical Research Institute, the latter of whom are already working in much of Kenya’s Western and Nyanza provinces. These epidemiologists, veterinarians, medical health professionals and laboratory technologists will visit over 500 homesteads in Busia to collect data and samples from people and livestock; those people found ill will be treated or referred to specialists.

The project data will be used to quantify the place of zoonoses in the context of other infectious diseases and to refine our understanding of factors that put people and livestock at risk. The study team also aims to come up with diagnostic tests that can be used in the field and to design cheap, easy-to-implement health interventions for both people and livestock. The project is focusing on bovine tuberculosis, cysticercosis, brucellosis, Q-fever, Rift Valley fever and trypanosomiasis (in cattle) /sleeping sickness (in people) and their impacts on both livestock and the people.

The results of this project are expected not only to improve the health aspects of the relationship between people and their livestock in western Kenya but also to provide important background for future research and policymaking on zoonotic issues.

More information can be found at www.zoonotic-diseases.org

The May 2010 issue of the Veterinary Record gives an excellent account of this ambitious human-animal health project: http://veterinaryrecord.bvapublications.com/misc/about.dtl (subscription required).